Главная - Компьютерные
Общее уравнение состояния идеального газа. Школьная энциклопедия. Цикл и теоремы Карно

Идеальный газ, уравнение состояния идеального газа, его температура и давление, объем… список параметров и определений, которыми оперируют в соответствующем разделе физики, можно продолжать достаточно долго. Сегодня мы поговорим как раз на эту тему.

Что рассматривается в молекулярной физике?

Основным объектом, который рассматривается в этом разделе, является идеальный газ. идеального газа было получено с учетом нормальных условий окружающей среды, и об этом мы поговорим немного позднее. Сейчас давайте подойдем к этой “проблеме” издалека.

Допустим, у нас есть некоторая масса газа. Ее состояние можно определить при помощи трех характера. Это, конечно же, давление, объем и температура. Уравнением состояния системы в этом случае будет формула связи между соответствующими параметрами. Она выглядит таким образом: F (p, V, T) = 0.

Вот здесь мы впервые потихоньку подбираемся к появлению такого понятия, как идеальный газ. Им называется газ, в котором взаимодействия между молекулами пренебрежимо малы. Вообще в природе такого не существует. Однако любой сильно близок к нему. От идеального мало чем отличаются азот, кислород и воздух, находящиеся в нормальных условиях. Чтобы записать уравнение состояния идеального газа, мы можем использовать объединенный Получим: pV/T = const.

Связанное понятие № 1: закон Авогадро

Он может рассказать нам о том, что если мы возьмем одинаковое количество молей абсолютно любого случайного газа и поставим их в одинаковые условия, среди которых температура и давление, то газы займут одинаковый объем. В частности, опыт проводился при нормальных условиях. Это означает, что температура была равна 273,15 Кельвинам, давление - одной атмосфере (760 миллиметров ртутного столба или же 101325 Паскалей). При таких параметрах газ занял объем равный 22,4 литра. Следовательно, мы можем говорить о том, что для одного моля любого газа соотношение числовых параметров будет величиной постоянной. Именно поэтому было принято решение этой цифре дать обозначение буквой R и назвать ее универсальной газовой постоянной. Таким образом, она равняется 8,31. Размерность Дж/моль*К.

Идеальный газ. Уравнение состояния идеального газа и манипуляции с ним

Давайте попробуем переписать формулу. Для этого запишем его в таком виде: pV = RT. Далее совершим нехитрое действие, умножим обе части уравнения на произвольное количество молей. Получим pVu = uRT. Примем во внимание тот факт, что произведение молярного объема на количество вещества есть просто объем. Но ведь количество молей одновременно будет равняться частному массы и молярной массы. Именно так выглядит Оно дает четкое понятие о том, какую систему образует идеальный газ. Уравнение состояния идеального газа примет вид: pV = mRT/M.

Выведем формулу для давления

Давайте проведем еще некоторые манипуляции с полученными выражениями. Для этого правую часть уравнения Менделеева-Клапейрона умножим и разделим на число Авогадро. Теперь внимательно смотрим на произведение количества вещества на Это есть не что иное, как общее число молекул в газе. Но в то же время отношение универсальной газовой постоянной к числу Авогадро будет равно постоянной Больцмана. Следовательно, формулы для давления можно записать таким образом: p = NkT/V или p = nkT. Здесь обозначение n это концентрация частиц.

Процессы идеального газа

В молекулярной физике существует такое понятие, как изопроцессы. Это которые имеют место в системе при одном из постоянных параметров. При этом масса вещества также должна оставаться постоянной. Давайте рассмотрим их более конкретно. Итак, законы идеального газа.

Постоянным остается давление

Это закон Гей-Люссака. Выглядит он так: V/T = const. Его можно переписать и по-другому: V = Vo (1+at). Здесь a равняется 1/273,15 К^-1 и носит название "коэффициент объемного расширения". Мы можем подставить температуру как по шкале Цельсия, так и по шкале Кельвина. В последнем случае получим формулу V = Voat.

Постоянным остается объем

Это второй закон Гей-Люссака, более часто называемый законом Шарля. Выглядит он так: p/T = const. Есть и другая формулировка: p = po (1 + at). Преобразования могут быть проведены в соответствии с предыдущим примером. Как можно видеть, законы идеального газа иногда бывают достаточно похожими друг на друга.

Постоянным остается температура

Если температура идеального газа остается величиной постоянной, то мы можем получить закон Бойля-Мариотта. Он может быть записан таким образом: pV = const.

Связанное понятие № 2: парциальное давление

Допустим, у нас имеется сосуд с газами. Это будет смесь. Система находится в состоянии теплового равновесия, а сами газы между собой не реагируют. Здесь N будет обозначать общее количество молекул. N1, N2 и так далее, соответственно, количество молекул в каждом из компонентов имеющейся смеси. Возьмем формулу давления p = nkT = NkT/V. Ее можно раскрыть для конкретного случая. Для двухкомпонентной смеси формула примет вид: p = (N1 + N2) kT/V. Но тогда получится, что общее давление будет суммироваться из частных давлений каждой смеси. А значит, оно будет иметь вид p1 + p2 и так далее. Это и будут парциальные давления.

Для чего это нужно?

Полученная нами формула указывает на то, что давление в системе оказывается со стороны каждой группы молекул. Оно, кстати, не зависит от других. Этим воспользовался Дальтон при формулировании закона, названного впоследствии в его честь: в смеси, где газы не реагируют между собой химически, общее давление будет равно сумме парциальных давлений.

Состояние газов характеризуется давлением Р, температурой 7, и объемом V. Связь между этими величи­нами определяется законами газового состояния.

Нефтяные и природные газы имеют значительные отклонения от законов идеальных газов вследствие взаимодействия между собой молекул, которое возникает при сжатии реальных газов. Степень отклонения сжи­маемости реальных газов от идеальных характеризуется коэффициентом сжимаемости z, показывающим отноше­ние объема реального газа к объму идеального при одних и тех же условиях.


В пласте углеводородные газы могут находиться в самых различных условиях. С увеличением давления от О до 3-4 МПа объем газов уменьшается. При этом молекулы углеводородного газа сближаются и силы притяжения между ними помогают внешним силам, сжимающим газ. Когда углеводородный газ сильно сжат, межмолекуляр­ные расстояния оказываются настолько малыми, что отталкивающие силы начинают оказывать сопротивление дальнейшему уменьшению объема и сжимаемость газа уменьшается.

На практике состояние реальных углеводородных газов при различных температурах и давлениях можно описывать на основании уравнения Клапейрона:

P-V=z-m-R-T (2.9)

где Р - давление гз. Па; V" - объем, занимаемый газом при заданном давлении, м 3 ; т - масса газа, кг; R - газовая постоянная, Дж/(кг-К); Т- температура, К; г - коэффициент сжимаемости.

Коэффициент сжимаемости определяют по графикам, построенным по экспериментальным данным.

Состояние углеводородных газожидкостных систем при изменении давления и температуры.

При движении нефти и газа в пласте, стволе скважины, системах сбора и подготовки меняются давление и температура, что обусловливает изменение фазового состояния углеводородов - переход из жидкого в газообраз­ное состояние и наоборот. Так как нефть и газ состоят из большого числа разнообразных по своим свойствам ком­понентов, то при определенных условиях часть этих компонентов может находиться в жидкой фазе, а другая - в паровой (газовой) фазе. Очевидно, что закономерности движения однофазной системы в пласте и стволе скважины значительно отличаются от закономерностей многофазного движения. Условия дальнего транспорта нефти и газа и последующей переработки требуют отделения легко испаряющихся компонентов от жидкой конденсированной фракции. Поэтому выбор технологии разработки месторождения, системы внутрипромысловой подготовки нефти и газа во многом связан с изучением фазового состояния углеводородов в меняющихся термодинамических усло­виях.



Фазовые превращения углеводородных систем иллюстрируются диаграммами фазовых состояний, пока­зывающими связь между давлением, температурой и удельным объемом вещества.

На рис. 2.2, а приведена диаграмма состояния чистого газа, (этана). Сплошными линиями на диаграмме показана связь между давлением и удельным объемом вещества при постоянных температурах. Линии, проходя­щие через область, ограниченную пунктирной кривой, имеют три характерных участка. Если рассматривать одну из линий области высоких давлений, то сначала рост давления сопровождается небольшим увеличением удельного объема вещества, которое обладает сжимаемостью и в этой области находится в жидком состоянии.


Рис. 2.2. Диаграмма состояния чистого газа

При некотором давлении изотерма резко изламывается и имеет вид горизонтальной линии. При постоянном давлении происходит непрерывное увеличение объема вещества. В этой области жидкость испаряется и переходит в паровую фазу. Испарение заканчивается в точке второго излома изотермы, после которого изменение объема сопровождается почти пропорциональным уменьшением давления. В этой области все веще­ство находится в газообразном

состоянии (в паровой фазе). Пунктирной линией, соединяющей точки излома изотерм, ограничена область перехо­да вещества из жидкого в паровое состояние или наоборот (в сторону уменьшения удельных объемов). Эта область соответствует условиям, при которых вещество находится одновременно в двух состояниях жидком и газообраз­ном (область двухфазного состояния вещества). Пунктирная линия, расположенная влево от точки С, называется кривой точек парообразования. Координаты точек данной линии - давление и температура, при которых начина­ется кипение вещества. Вправо от точки С лежит пунктирная линия, называемая кривой точек конденсации или точек росы. Она показывает при каких давлениях и температурах начинается конденсация пара - переход вещест­ва в жидкое состояние. Точка С, лежащая в вершине двухфазной области, называется критической точкой. При давлении и температуре, соответствующей этой точке, свойства паровой и жидкой фаз одинаковы. Кроме того, для чистого вещества критическая точка определяет наивысшие значения давления и температуры, при которых веще­ство может одновременно находиться в двухфазном состоянии. При рассмотрении изотермы, не пересекающей двухфазную область видно, что свойства вещества изменяются непрерывно и переход вещества из жидкого со­стояния в газообразное или наоборот происходит, минуя двухфазное состояние.


На рис. 2.2, б приведена диаграмма состояния этана, перестроенная в координатах давление-температура. Так как чистое вещество из одного фазового состояния в другое переходит при постоянном давлении, то кривые точек испарения и конденсации на этой диаграмме совпадают и заканчиваются критической точкой С. полученная линия разграничивает области жидкого и парообразного вещества. В двухфазном состоянии вещество может нахо­диться только при давлениях и температурах соответствующих координатам этой линии.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева - Клапейрона ) - формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

Так как , где-количество вещества, а , где- масса,-молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева - Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака:

- закон Бойля - Мариотта .

- Закон Гей-Люссака .

- закон Шарля (второй закон Гей-Люссака, 1808 г.).А в форме пропорции этот закон удобен для расчёта перевода газа из одного состояния в другое. С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объёмводородасоединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

1 Объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

- закон Бойля - Мариотта . Закон Бойля - Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627-1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620-1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

где -показатель адиабаты, - внутренняя энергия единицы массы вещества.Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля - Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведениеувеличивается.

5. Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m 0 v-(-m 0 v)=2m 0 v, где т 0 - масса молекулы, v - ее скорость.

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой v Dt .Число этих молекул равно n DSv Dt (n- концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1 / 3 моле­кул, причем половина молекул (1 / 6) дви­жется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1 / 6 nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

DР = 2m 0 v 1 / 6 n DSv Dt = 1 / 3 nm 0 v 2 DS Dt .

Тогда давление газа, оказываемое им на стенку сосуда,

p =DP/(DtDS)= 1 / 3 nm 0 v 2 . (3.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v 1 , v 2 , ..., v N , то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (3.1) с учетом (3.2) при­мет вид

р = 1 / 3 пт 0 2 . (3.3)

Выражение (3.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов. Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm 0 , то урав­нение (3.4) можно переписать в виде

pV = 1 / 3 m 2 .

Для одного моля газа т = М (М - моляр­ная масса), поэтому

pV m = 1 / 3 M 2 ,

где V m - молярный объем. С другой сто­роны, по уравнению Клапейрона - Мен­делеева, pV m =RT. Таким образом,

RT= 1 / 3 М 2 , откуда

Так как М = m 0 N A , где m 0 -масса од­ной молекулы, а N А - постоянная Авогад­ро, то из уравнения (3.6) следует, что

где k = R/N A -постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода - 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

) 2 /2 = 3 / 2 kT(43.8)

(использовали формулы (3.5) и (3.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 =0,т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (3.8) раскрывает молекулярно-кинетическое толкование температуры.

Возьмем некоторое количество газа определенного химического состава, например азота, кислорода или воздуха, и заключим его в сосуд, объем которого можно изменять по своему усмотрению. Будем считать, что у нас имеется манометр, т. е. прибор для измерения давления газа, и термометр для измерения его температуры. Опыт показывает, что перечисленные макроскопические параметры полностью характеризуют газ как термодинамическую систему в том случае, когда этот газ состоит из нейтральных молекул, не обладающих собственным дипольным моментом.

В состоянии термодинамического равновесия не все эти параметры независимы, они связаны между собой уравнением состояния. Чтобы получить это уравнение, нужно воспользоваться

установленными на опыте закономерностями поведения газа при изменении каких-либо внешних параметров.

Газ в сосуде - простая термодинамическая система. Примем сначала, что ни количество газа, ни его химический состав во время опыта не меняются, так что речь пойдет только о трех макроскопических параметрах - давлении объеме V и температуре Для установления связывающих эти параметры закономерностей удобно зафиксировать значение одного из параметров и следить за изменениями двух других. Будем считать, что вызываемые нами изменения в газе происходят настолько медленно, что в любой момент времени макроскопические параметры характеризующие весь газ в состоянии термодинамического равновесия, имеют вполне определенные значения.

Изопроцессы. Как уже отмечалось, из любого неравновесного состояния термодинамическая система приходит в состояние равновесия за некоторое время - время релаксации. Чтобы при происходящих в системе изменениях макроскопические параметры имели вполне определенные значения, характерное время этих изменений должно быть много больше времени релаксации. Это условие накладывает ограничения на допустимую скорость процесса в газе, при котором сохраняют смысл его макроскопические параметры.

Процессы, протекающие при неизменном значении одного из параметров, принято называть изопроцессами. Так, процесс, происходящий при постоянной температуре, называется изотермическим, при постоянном объеме - изохорическим (изохорным), при постоянном давлении - изобарическим (изобарным).

Закон Бойля-Мариотта. Исторически первым в газе был экспериментально изучен изотермический процесс. Английский физик Р. Бойль и независимо от него французский физик Э. Мариотт установили закон изменения объема при изменении давления: для данного количества любого газа при неизменной температуре объем обратно пропорционален давлению. Обычно закон Бойля-Мариотта записывают в виде

Для поддержания постоянной температуры исследуемый газ должен находиться в хорошем тепловом контакте с окружающей средой, имеющей неизменную температуру. В этом случае говорят, что газ находится в контакте с термостатом - большим тепловым резервуаром, на состояние которого не влияют любые изменения, происходящие с исследуемым газом.

Закон Бойля-Мариотта хорошо выполняется для всех газов и их смесей в широком диапазоне температур и давлений. Отклонения от

этого закона становятся существенными лишь при давлениях, в несколько сотен раз превышающих атмосферное, и при достаточно низких температурах.

Проверить справедливость закона Бойля-Мариотта можно совсем простыми средствами. Для этого достаточно иметь запаянную с одного конца стеклянную трубку, в которой столбик ртути закрывает некоторое количество воздуха (трубка Мельде). Объем воздуха можно измерять линейкой по длине воздушного столба в трубке (рис. 45), а о давлении можно судить по высоте столбика ртути при разных ориентациях трубки в поле тяжести.

Для наглядного изображения изменений состояния газа и происходящих с ним процессов удобно использовать так называемые -диаграммы, где по оси абсцисс откладываются значения объема, а по оси ординат - давления. Кривая на -диаграмме, соответствующая изотермическому процессу, называется изотермой.

Рис. 45. Простейший прибор для проверки закона Бойля-Мариотта (трубка Мельде)

Рис. 46. Изотермы газа на -диаграмме

Как следует из закона Бойля-Мариотта, газовые изотермы представляют собой гиперболы (рис. 46). Чем выше температура, тем дальше от координатных осей расположена соответствующая изотерма.

Закон Шарля. Зависимость давления газа от температуры при неизменном объеме была экспериментально установлена французским физиком Ж. Шарлем. Согласно закону Шарля, давление газа при постоянном объеме линейно зависит от температуры:

где - давление газа при О °С. Оказывается, что температурный коэффициент давления а одинаков для всех газов и равен

Закон Гей-Люссака. Аналогичный вид имеет и зависимость объема газа от температуры при неизменном давлении. Это было установлено на опыте французским физиком Гей-Люссаком, который нашел, что температурный коэффициент расширения одинаков для всех газов. Значение этого коэффициента оказалось таким же, как и коэффициента а в законе Шарля. Таким образом, закон Гей-Люссака можно записать в виде

где - объем газа при О °С.

Совпадение температурных коэффициентов в законах Шарля и Гей-Люссака не случайно и свидетельствует о том, что эти устанавливаемые на опыте газовые законы не являются независимыми. Ниже мы подробнее остановимся на этом.

Газовый термометр. Тот факт, что выражаемая законами Шарля и Гей-Люссака зависимость давления или объема от температуры одинакова для всех газов, делает особенно удобным выбор газа в качестве термометрического тела. Хотя на практике использовать газовые термометры в силу их громоздкости и тепловой инерционности неудобно, именно по ним производится градуировка других термометров, более удобных для практических применений.

Шкала Кельвина. Зависимость давления или объема от температуры в законах Шарля и Гей-Люссака станет еще проще, если перейти к новой температурной шкале, потребовав, чтобы линейная зависимость превратилась в прямую пропорциональность.

Изобразив выражаемую формулой (3) зависимость объема газа от температуры (рис. 47) и продолжив график влево до пересечения с осью температуры, легко убедиться, что продолжение графика пересекает ось Гпри значении температуры, равном поскольку Именно в эту точку нужно поместить начало новой температурной шкалы, чтобы можно было записать уравнения (2) и (3) как прямую пропорциональность. Эту точку называют абсолютным нулем температуры. Масштаб новой шкалы, т. е. единица измерения температуры, выбирается так же, как и в шкале Цельсия. На новой температурной шкале нулю градусов Цельсия соответствует температура градуса (точнее 273,15), а любая другая температура Т связана с соответствующей температурой по шкале Цельсия соотношением

Введенная здесь температурная шкала называется шкалой Кельвина, а единица измерения, совпадающая с градусом шкалы Цельсия, называется кельвином и обозначается буквой К. Иногда эта шкала называется Международной практической шкалой температуры.

При использовании температурной шкалы Кельвина график закона Гей-Люссака принимает вид, показанный на рис. 48, а формулы (2) и (3) можно записать в виде

Рис. 47. Выражаемая законом Гей-Люссака зависимость объема газа от температуры при постоянном давлении

Рис. 48. График закона Гей-Люссака в температурной шкале Кельвина

Коэффициент пропорциональности в (6) характеризует наклон графика на рис. 48.

Уравнение состояния газа. Экспериментальные газовые законы дают возможность установить уравнение состояния газа. Для этого достаточно воспользоваться любыми двумя из приведенных законов. Пусть некоторое количество газа находится в состоянии с объемом давлением и температурой Переведем его в другое (промежуточное) состояние, характеризуемое тем же значением температуры и некоторыми новыми значениями объема V и давления При изотермическом процессе выполняется закон Бойля- Мариотта, поэтому

Теперь переведем газ из промежуточного состояния в конечное состояние с тем же значением объема , что и в промежуточном состоянии, и некоторыми значениями давления и температуры При изохорическом процессе выполняется закон Шарля, поэтому

поскольку Подставляя в из (7) и учитывая, что окончательно получаем

Мы изменили все три макроскопических параметра и Т, и тем не менее соотношение (9) показывает, что для данного количества газа (числа молей комбинация параметров имеет одно и то же значение, в каком бы состоянии этот газ не находился. Это означает, что уравнение (9) представляет собой уравнение состояния газа. Его называют уравнением Клапейрона.

В приведенном выводе уравнения (9) не использовался закон Гей-Люссака. Однако легко видеть, что в нем содержатся все три газовых закона. Действительно, полагая в получаем для изобарического процесса соотношение что соответствует закону Гей-Люссака.

Уравнение Менделеева-Клапейрона. Возьмем один моль газа при нормальных условиях, т. е. при и нормальном атмосферном давлении . В соответствии с установленным на опыте законом Авогадро один моль любого газа (гелия, азота, кислорода и т. д.) занимает при нормальных условиях одинаковый объем литра. Поэтому для одного моля любого газа комбинация обозначаемая через и называемая универсальной газовой постоянной (или молярной газовой постоянной), имеет одно и то же значение:

С учетом (10) уравнение состояния одного моля любого газа можно записать в виде

Уравнение (11) легко обобщить для произвольного количества газа. Так как при тех же значениях температуры и давления молей газа занимают в раз больший объем, чем 1 моль, то

В таком виде уравнение состояния газа впервые было получено русским ученым Д. И. Менделеевым. Поэтому его называют уравнением Менделеева-Клапейрона.

Идеальный газ. Уравнение состояния газа (11) или (12) было получено на основе установленных на опыте газовых законов. Эти законы выполняются приближенно: условия их применимости

различны для разных газов. Например, для гелия они справедливы в более широком диапазоне температур и давлений, чем для углекислого газа. Приближенным является и уравнение состояния, полученное из приближенных газовых законов.

Введем в рассмотрение физическую модель - идеальный газ. Под этим будем понимать систему, для которой уравнение (11) или (12) является точным. Замечательной особенностью идеального газа является то, что его внутренняя энергия пропорциональна абсолютной температуре и не зависит от объема, занимаемого газом.

Как и во всех других случаях использования физических моделей, применимость модели идеального газа к тому или иному реальному газу зависит не только от свойств самого газа, но и от характера вопроса, на который требуется найти ответ. Такая модель не позволяет описать особенности поведения различных газов, но выявляет свойства, общие для всех газов.

С применением уравнения состояния идеального газа можно познакомиться на примере конкретных задач.

Задачи

1. В одном баллоне объемом находится азот при давлении . В другом баллоне объемом находится кислород при давлении Температура газов совпадает с температурой окружающей среды. Какое установится давление газов, если открыть кран трубки, соединяющей эти баллоны между собой?

Решение. После открывания крана газ из баллона с более высоким давлением будет поступать в другой баллон. В конце концов давление в баллонах выравняется, а газы перемешаются. Даже если в процессе перетекания газов температура изменилась, после установления теплового равновесия она снова сравняется с температурой окружающего воздуха.

Для решения задачи можно воспользоваться уравнением состояния идеального газа. Обозначив через количество газов в баллонах до открывания крана, имеем

В конечном состоянии смесь газов содержит молей, занимает объем и находится при давлении которое нужно определить. Применяя к смеси газов уравнение Менделеева-Клапейрона, имеем

Выражая из уравнений (13) и подставляя в (14), находим

В частном случае, когда исходные давления газов одинаковы, давление смеси после установления равновесия остается таким же. Интересен предельный случай соответствующий замене второго сосуда атмосферой. Из (15) при этом получаем где - давление атмосферы. Такой результат очевиден из общих соображений.

Обратим внимание на то, что выражаемый формулой (15) результат соответствует тому, что давление смеси газов равно сумме парциальных давлений каждого из газов, т. е. давлений, которые имел бы каждый из газов, занимая при той же температуре весь объем. Действительно, парциальные давления каждого газа можно найти с помощью закона Бойля-Мариотта:

Видно, что полное давление равное сумме парциальных давлений выражается формулой (15). Утверждение, что давление смеси химически невзаимодействующих газов равно сумме парциальных давлений, называется законом Дальтона.

2. Истопив печь, в дачном домике температуру воздуха повысили от 0 до Как при этом изменилась плотность воздуха?

Решение. Ясно, что объем помещения при протапливании печи не изменился, так как тепловым расширением стен можно пренебречь. Если бы мы нагревали воздух при неизменном объеме V в закрытом сосуде, его давление возросло бы, но плотность осталась бы неизменной. Но дачный домик не герметичен, поэтому неизменным остается давление воздуха, равное наружному атмосферному давлению. Ясно, что при повышении температуры Т должна измениться масса воздуха в помещении: какая-то его часть должна выйти через щели наружу.. Ясно, что столбик воды не будет вытолкнут из трубки только при очень малых изменениях температуры. Чтобы оценить изменение температуры, при котором столбик поднимается на заданное расстояние перепишем (19) следующим образом:

Полагая для оценки получаем Приведенная оценка показывает, что с помощью этого очень простого устройства можно обнаружить изменение температуры вплоть до 0,01 К, так как легко заменить изменение положения столбика на 1 мм.

Что такое время релаксации для термодинамической системы?

Какие ограничения должны быть наложены на скорость протекания процессов в газе, чтобы в любой момент времени имели смысл макроскопические параметры описывающие газ в состоянии равновесия?

Чем определяется числовое значение константы в правой части уравнения закона Бойля-Мариотта (1)?

Что имеют в виду, когда говорят, что изучаемая система находится в контакте с термостатом?

Предложите способ проверки закона Бойля-Мариотта с помощью описанного в тексте прибора (см. рис. 45).

Какие преимущества дает выбор газа в качестве термометрического тела?

Как связан выбор начала отсчета температур в шкале Кельвина со значением температурного коэффициента расширения газа?

Как устанавливается связь температур, измеренных по шкале Цельсия и шкале Кельвина?

Выведите уравнение состояния газа, используя законы Бойля-Мариотта и Гей-Люссака.

Уравнение Клапейрона было получено с использованием только двух газовых законов, однако содержит в себе все три закона. Как это связано с тем фактом, что у газов температурные коэффициенты давления и объема одинаковы?

Что такое универсальная газовая постоянная? Как она связана с законом Авогадро?

Какую физическую систему называют идеальным газом? Чем определяются условия применимости этой модели? От чего зависит внутренняя энергия идеального газа?

Можно ли объяснить установленный на опыте закон Дальтона для смеси газов, опираясь на уравнение Менделеева-Клапейрона?

Как изменится чувствительность к изменениям температур простого устройства, описанного в задаче 3, если верхнее отверстие трубки заткнуть?

 


Читайте:



Алексей Кириллович Разумовский

Алексей Кириллович Разумовский

Разумовский (граф Алексей Кириллович, 1748 - 1822) - государственный деятель. Разумовский получил тщательное образование: для него с братьями был...

Методическое пособие по истории древнего мира (Годер Г

Методическое пособие по истории древнего мира (Годер Г

Страница 8 Триумфальная процессияО том, что было запечатлено на подобных арках или картинах, говорит Иосиф Флавий, описывая один из римских...

Критерий согласия Пирсона (критерий хи-квадрат)

Критерий согласия Пирсона (критерий хи-квадрат)

До конца XIX века нормальное распределение считалась всеобщим законом вариации данных. Однако К. Пирсон заметил, что эмпирические частоты могут...

Этапы процесса моделирования

Этапы процесса моделирования

Прежде всего необходимо подчеркнуть, что в этом процессе обязательно участвуют и взаимодействуют друг с другом субъект, объект исследования и...

feed-image RSS