Главная - Работа
Условия равновесия твердого тела. Статика. Равновесие механической системы (абсолютно твердого тела) В чем заключается первое условие равновесия тел

Все силы, действующие на материальную точку, приложены в одной точке. Результирующая сила определяется как геометрическая сумма всех сил, действующих на материальную точку. Если результирующая сила равна нулю, то согласно 2-го закона Ньютона ускорение материальной точки равно нулю, скорость постоянна или равна нулю, материальная точка находится в состоянии равновесия.

Условие равновесия материальной точки : . (6.1)

Гораздо более важным вопросом в статике является вопрос о равновесии протяженного тела, поскольку на практике приходится иметь дело именно с такими телами. Ясно, что для равновесия тела необходимо, чтобы результирующая сила, действующая на тело, равнялась нулю. Но выполнение этого условия недостаточно. Рассмотрим горизонтально расположенный стержень, способный вращаться относительно горизонтальной оси О (рис. 6.2). На стержень действуют: сила тяжести , сила реакции оси, две внешние силы и , равные по величине и противоположные по направлению. Результирующая этих сил равна нулю:

однако наш практический опыт подсказывает нам, что стержень начнет вращаться, т.е. не будет находиться в состоянии равновесия. Обращаем внимание, что моменты сил и относительно оси О равны нулю, моменты сил и не равны нулю и оба положительны, силы стараются повернуть стержень по часовой стрелке относительно оси О .

На рис.6.3 силы и равны по величине и направлены одинаково. Результирующая всех сил, действующих на стержень, равна нулю (в этом случае сила больше, чем в первом случае, она уравновешивает результирующую трех сил - , и ). Результирующий момент всех сил равен нулю, стержень находится в равновесии. Приходим к выводу, что для равновесия тела необходимо выполнение двух условий.

Условия равновесия протяженного тела :

Запишем важные правила, которыми можно пользоваться при рассмотрении условий равновесия тела.

1. Векторы приложенных к телу сил можно перемещать вдоль линии их действия. Результирующая сила и результирующий момент при этом не меняются.

2. Второе условие равновесия выполняется относительно любой оси вращения. Удобно выбирать такую ось вращения, относительно которой уравнение (6.3) будет наиболее простым. Например, относительно оси О на рис. 6.2 моменты сил и равны нулю.

Устойчивое равновесие . В устойчивом равновесии потенциальная энергия тела минимальна. При смещении тела из положения устойчивого равновесия потенциальная энергия возрастает, возникает результирующая сила, направленная к положению равновесия.

Неустойчивое равновесие . При смещении тела из положения неустойчивого равновесия потенциальная энергия уменьшается, возникает результирующая сила, направленная от положения равновесия.


Центр тяжести тела - точка приложения результирующей всех сил тяжести, действующих на отдельные элементы тела.

Признак равновесия . Тело сохраняет равновесие, если вертикальная прямая, проходящая через центр тяжести, пересекает площадь опоры тела.

Статический расчет инженерных сооружений во многих случаях сводится к рассмотрению условий равновесия конструкции из систе­мы тел, соединенных, какими-нибудь связями. Связи, соединяющие части данной конструкции, будем называть внутренними в отличие от внешних связей, скрепляющих кон­струкцию с телами, в неё не входя­щими (например, с опорами).

Если после отбрасывания внешних связей (опор) конструкция остается жесткой, то для нее задачи статики решаются как для абсолютно твердо­го тела. Однако могут встречаться такие инженерные конструкции, ко­торые после отбрасывания внешних связей не остаются жесткими. Примером такой конструкции является трехшарнирная арка. Если отбросить опоры А и В, то арка не будет жесткой: ее части могут поворачиваться вокруг шарнира С.

На основании принципа отвердевания система сил, действующих на такую конструкцию, должна при равновесии удовлетворять ус­ловиям равновесия твердого тела. Но эти условия, как указывалось, будучи необходимыми, не будут являться достаточными; поэтому из них нельзя определить все неизвестные величины. Для решения задачи необходимо дополнительно рассмотреть равновесие какой-нибудь одной или нескольких частей конструкции.

Например, составляя условия равновесия для сил, действующих на трехшарнирную арку, мы получим три уравнения с четырьмя неизвестными Х А, Y A , X B , Y B . Рассмотрев дополнительно условия равновесия левой (или правой) ее половины, получим еще три уравнения, содержащие два новых неизвестных Х С, Y С, на рис. 61 не показанных. Решая полученную систему шести уравнений, найдем все шесть неизвестных.

14. Частные случаи приведения пространственной системы сил

Если при приведении системы сил к динамическому винту главный момент динамы оказался равным нулю, а главный век­тор отличен от нуля, то это означает, что система сил приведена к равнодействующей, причем центральная ось является линией действия этой равнодействующей. Выясним, при каких условиях, относящихся к главному век­тору Fp и главному моменту М 0 , это может быть. Поскольку главный момент динамы М* равен составляющей главного мо­мента М 0 , направленной по главному вектору, то рассматривае­мый случай М* =О означает, что главный момент М 0 перпенди­кулярен главному вектору, т. е. / 2 = Fo*M 0 = 0. Отсюда непо­средственно вытекает, что если главный вектор F 0 не равен нулю, а второй инвариант равен нулю, Fo≠O, / 2 = F 0 *M 0 =0, (7.9)то рассматриваемая система приводится к равнодействующей.

В частности, если для какого-либо центра приведения F 0 ≠0, а М 0 = 0, то это означает, что система сил приведена к равно­действующей, проходящей через данный центр приведения; при этом условие (7.9) также будет выполнено.Обобщим приведенную в главе V теорему о моменте равно­действующей (теорему Вариньона) на случай пространственной системы сил.Если пространственная система . сил приводится к равнодейст­вующей, то момент равнодействующей относительно произвольной точки равен геометрической сумме моментов всех сил относительно той же точки. П
усть система сил имеет равнодействующуюR и точка О лежит на линии действия этой равнодействующей. Если приводить заданную систему сил к этой точке, то получим, что главный момент равен нулю.
Возьмем какой-либо другой центр приведения О1; (7.10)С
другой стороны, на основании формулы (4.14) имеемMo1=Mo+Mo1(Fo), (7.11) т.к М 0 = 0. Сравнивая выражения (7.10) и (7.11) и учиты­вая, что в данном случае F 0 = R, получаем (7.12).

Таким образом, теорема доказана.

Пусть при каком-либо выборе центра приведения Fo=О, М ≠0. Так как главный вектор не зависит от центра приведе­ния, то он равен нулю и при любом другом выборе центра при­ведения. Поэтому главный момент тоже не меняется при пере­мене центра приведения, и, следовательно, в этом случае система сил приводится к паре сил с моментом, равным M0 .

Составим теперь таблицу всех возможных случаев приведения пространственной системы сил:

Если все силы находятся в одной плоскости, например, в пло­скости Оху, то их проекции на ось г и моменты относительно осей х и у будут равны нулю. Следовательно, Fz=0; Mox=0, Moy=0. Внося эти значения в формулу (7.5), найдем, что второй инва­риант плоской системы сил равен нулю.Тот же результат мы получим и для пространственной системы параллельных сил. Действительно, пусть все силы параллельны оси z . Тогда проекции их на оси х и у и моменты относительно оси z будут равны 0. Fx=0, Fy=0, Moz=0

На основании доказанного можно утверждать, что плоская система сил и система параллельных сил не приводятся к динамическому винту.

11. Равновесие тела при наличии трения скольжения Если два тела / и // (рис. 6.1) взаимодействуют друг с другом, соприкасаясь в точке А, то всегда реакцию R A , дейст­вующую, например, со стороны тела // и приложенную к телу /, можно разложить на две составляю­щие: N.4, направленную по общей нормали к поверхности соприкасаю­щихся тел в точке Л, и Т 4 , лежащую в касательной плоскости. Составляю­щая N.4 называется нормальной реак­цией, сила Т л называется силой тре­ния скольжения - она препятствует" скольжению тела / по телу //. В со­ответствии с аксиомой 4 (3 з-он Ньютона) на тело // со стороны тела / действует равная по модулю и противоположно направленная сила реакции. Ее составляющая, перпендикулярная касательной плос­кости, называется силой нормального давления. Как было сказано выше, сила трения Т А = О, если соприкасающиеся поверхности идеально гладкие. В реальных условиях поверхности шероховаты и во многих случаях пренебречь силой трения нельзя.Для выяснения основных свойств сил трения произведем опыт по схеме, представленной на рис. 6.2, а. К телу 5, нахо­дящемуся на неподвижной плите D, присоединена перекинутая через блок С нить, свободный конец которой снабжен опорной площадкой А. Если площадку А постепенно нагружать, то с уве­личением ее общего веса будет возрастать натяжение нити S , которое стремится сдвинуть тело вправо. Однако пока общая нагрузка не слишком велика, сила трения Т будет удерживать тело В в покое. На рис. 6.2, б изображены действующие на тело В силы, причем через Р обозначена сила тяжести, а через N - нормальная реакция плиты D . Если нагрузка недостаточна для нарушения покоя, справед­ливы следующие уравнения равновесия: N - P = 0, (6.1) S-T = 0. (6.2).Отсюда следует, что N = P и T = S. Таким образом, пока тело находится в покое, сила трения остается равной силе натя­жения нити S. Обозначим через Tmax силу трения в критический момент процесса нагружения, когда тело В теряет равновесие и начинает скользить по плите D . Следовательно, если тело нахо­дится в равновесии, то T≤Tmax.Максимальная сила трения Т тах зависит от свойств материа­лов, из которых сделаны тела, их состояния (например, от харак­тера обработки поверхности), а также от величины нормального давления N. Как показывает опыт, максимальная сила трения при­ближенно пропорциональна нор­мальному давлению, т. е. имеет место равенство Tmax = fN . (6.4).Это соотношение носит название закона Амонтона - Кулона. Безразмерный коэффициент / называется коэффициентом тре­ния скольжения. Как следует из опыта, его величина в широких пределах не зависит от площади соприкасающихся поверхностей, но зависит от материала и степени шероховатости соприкасаю­щихся поверхностей. Значения коэффициентов трения устанавли­ваются опытным путем и их можно найти в справочных таблицах. Неравенство" (6.3) можно теперь записать в виде T≤fN (6,5).Случай строгого равенства в (6.5) отвечает максимальному значению силы трения. Это значит, что силу трения можно вычислять по формуле T = fN только в тех случаях, когда зара­нее известно, что имеет место критический случай. Во всех же других случаях силу трения следует определять из уравнений равновесия.Рассмотрим тело, находящееся на шероховатой поверхности. Будем считать, что в результате действия активных сил и сил реакции тело находится в предельном равновесии. На рис. 6.6, a показана предельная реакция R и ее составляющие N и Т тах (в положении, изображенном на этом рисунке, активные силы стремятся сдвинуть тело вправо, максимальная сила трения Т та х направлена влево). Угол ф между предельной реакцией R и нор­малью к поверхности называется углом трения. Найдем этот угол. Из рис. 6.6, а имеем tgφ=Tmax/N или, пользуясь выражением (6.4), tgφ= f (6-7)Из этой формулы видно, что вместо коэффициента трения можно задавать угол трения (в справочных таблицах п

риводятся обе величины).

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, не движется с ускорением. Подвесим

шар на нити. На шар действует сила тяжести, но не вызывает ускоренного движения к Земле. Этому препятствует действие равной по модулю и направленной в противоположную сторону силы упругости. Сила тяжести и сила упругости уравновешивают друг друга, их равнодействующая равна нулю, поэтому равно нулю и ускорение шара (рис. 40).

Точку, через которую проходит равнодействующая сил тяжести при любом расположении тела, называют центром тяжести (рис. 41).

Раздел механики, изучающий условия равновесия сил, называется статикой.

Равновесие невращающихся тел.

Равномерное прямолинейное поступательное движение тела или его покой возможны только при равенстве нулю геометрической суммы всех сил, приложенных к телу.

Невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тел, имеющих ось вращения.

В повседневной жизни и технике часто встречаются тела, которые не могут двигаться поступательно, но могут вращаться вокруг оси. Примерами таких тел могут служить двери и окна, колеса автомобиля, качели и т. д. Если вектор силы Р лежит на прямой, пересекающей ось вращения, то эта сила уравновешивается силой упругости со стороны оси вращения (рис. 42).

Если же прямая, на которой лежит вектор силы F, не пересекает ось вращения, то эта сила не может быть уравновешена

силой упругости со стороны оси вращения, и тело поворачивается вокруг оси (рис. 43).

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тёло находится в равновесии, если выполняется условие:

где - кратчайшие расстояния от прямых, на которых лежат векторы сил (линии действия сил), до оси вращения (рис. 44). Расстояние называется плечом силы, а произведение модуля силы на плечо называется моментом силы М:

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, - отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии от оси вращения. Эту единицу называют ньютон-метром

Общее условие равновесия тела. Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

При выполнении общего условия равновесия тело необязательно находится в покое. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил ускорение тела равно нулю и оно может находиться в покое или? двигаться равномерно и прямолинейно.

Равенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия.

В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное.

Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления (рис. 45).

Равновесие называется неустойчивым, если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия (рис. 46).

Еслн при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю, то тело находится в состоянии безразличного равновесия. В безразличном равновесии находится шар на горизонтальной поверхности (рис. 47).

Тело, имеющее неподвижную ось вращения, находится в устойчивом равновесии, если его центр тяжести расположен ниже оси вращения и находятся на вертикальной прямой, проходящей через ось вращения (рис. 48, а).

При небольшом отклонении от этого положения равновесия алгебраическая сумма моментов сил, действующих на тело, становится отличной от нуля и возникающий момент сил поворачивает тело к первоначальному положению равновесия (рис. 48, б).

Если же центр тяжести находится на вертикальной прямой, проходящей через ось вращения, но расположен выше оси вращения, то равновесие неустойчивое (рис. 49, а, б).

Тело находится в безразличном равновесии, когда ось вращения тела проходит через его центр тяжести (рис. 50).

Равновесие тела на опоре.

Если вертикальная линия, проведенная через центр тяжести С тела, пересекает площадь опоры, то тело находится в равновесии (рис. 51). Если же вертикальная линия, проведенная через центр тяжести, не пересекает площадь опоры, то тело опрокидывается (рис. 52).

Статика — это раздел механики, изучающий равновесие тел. Статика позволяет определить условия равновесия тел и отвечает на некоторые вопросы, которые касаются движения тел, например, дает ответ, в каком направлении возникает движение, если равновесие нарушено. Стоит оглянуться вокруг и можно заметить, что большинство тел находятся в равновесии – они либо движутся с постоянной скоростью, либо покоятся. Этот вывод можно сделать из законов Ньютона.

Примером может служить сам человек, картина, висящая на стене, подъёмные краны, различные постройки: мосты, арки, башни, здания. Тела вокруг нас подвергаются воздействию каких-либо сил. На тела действует разное количество сил, но если будем находить результирующую силу, для тела, находящегося в равновесии, она будет равна нулю.
Различают:

  • статическое равновесие – тело покоится;
  • динамическое равновесие – тело движется с постоянной скоростью.

Статическое равновесие. Если на тело действуют силы F1, F2, F3, и так далее, то основным требованием существования состояния равновесия является (равновесие). Это векторное уравнение в трехмерном пространстве, и представляет три отдельных уравнения, по одному для каждого направлению пространства. .

Приложенные к телу проекции всех сил на любое направление, должны компенсироваться, то есть алгебраическая сумма проекций всех сил на любое направление должна быть равна 0.

При нахождении равнодействующей силы можно перенести все силы и расположить точку их приложения в центр масс. Центр масс – точка, которая вводится для характеристики движения тела или системы частиц, как целого, характеризует распределение масс в теле.

На практике мы очень часто встречаем случаи и поступательного, и вращательного движения одновременно: скатывание бочки по наклонной плоскости, танцующая пара. При таком движении одного условия равновесия недостаточно.

Необходимое условие равновесия в этом случае будет:

На практике и в жизни большую роль играет устойчивость тел , характеризующая равновесие.

Различают виды равновесия:

  • Устойчивое равновесие;
  • Неустойчивое равновесие;
  • Безразличное равновесие.

Устойчивое равновесие – это равновесие, когда при малом отклонении от положения равновесия возникает сила, возвращающая его в состояние равновесия (маятник остановившихся часов, теннисный шарик, закатившийся в ямку, Ванька-встанька или неваляшка, белье на веревке находятся в состоянии устойчивого равновесия).

Неустойчивое равновесие – это состояние, когда тело после выведения из положения равновесия отклоняется из-за возникающей силы еще больше от положения равновесия (теннисный шарик на выпуклой поверхности).

Безразличное равновесие – будучи предоставленным, самому себе тело не меняет своего положения после выведения из состояния равновесия (теннисный шарик, лежащий на столе, картина на стене, ножницы, линейка, подвешенные на гвоздик находятся в состоянии безразличного равновесия). Ось вращения и центр тяжести совпадают.

Для двух тел, то тело будет более устойчиво, которое обладает большей площадью опоры.



РАВНОВЕСИЕ ТЕЛ

«Дайте мне точку опоры, и я подниму Землю.»

Архимед


Условия равновесия.

  • I условие равновесия:
  • Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю.

F=0.

  • II условие равновесия:
  • Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по час. =∑ M против час.

  • М = F l, где М – момент силы, F - сила, l – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

Центр тяжести тела.

  • Центр тяжести тела- это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.

ВИДЫ РАВНОВЕСИЯ

Безразличное

Устойчивое

Неустойчивое


Если на тело, имеющее опору, действуют уравновешивающие силы, то тело находится в положении равновесия.


При отклонении тела от положения равновесия нарушается и равновесие сил. Если тело под действием равнодействующей силы возвращается в исходное положение, то это - устойчивое равновесие .

Если же тело под действием равнодействующей силы, ещё сильнее отклоняется от положения равновесия, то это - неустойчивое равновесие .


Возможен случай, когда при любом положении тела, равновесие сил сохраняется. Это состояние называется безразличным равновесием .


Вывод :

  • Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.
  • Устойчиво такое положение, в котором его потенциальная энергия минимальна.



В случае если центр тяжести расположен ниже точки опоры, равновесие тела или системы тел – устойчивое . При отклонении тела, центр тяжести повышается, и тело возвращается в исходное состояние.


Равновесие тела, имеющего точку опоры ниже центра тяжести, неустойчиво . Но равновесие может восстанавливаться путём смещения точки опоры тела в сторону смещения центра тяжести.



По положению центра тяжести можно судить о виде равновесия. Например езда эквилибриста по канату на велосипеде с противовесом является примером устойчивого равновесия .


Вывод :

  • Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.



Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будет устойчивым. При устойчивом равновесии вертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.


Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона. Если этот угол превысить, то тела опрокидываются.


При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.


Неустойчивое равновесие

Устойчивое равновесие




Вывод :

1. Устойчиво то тело, у которого площадь опоры больше.

2. Из двух тел одинаковой площади устойчиво то, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.





  • Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  • Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  • Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.
 


Читайте:



Алексей Кириллович Разумовский

Алексей Кириллович Разумовский

Разумовский (граф Алексей Кириллович, 1748 - 1822) - государственный деятель. Разумовский получил тщательное образование: для него с братьями был...

Методическое пособие по истории древнего мира (Годер Г

Методическое пособие по истории древнего мира (Годер Г

Страница 8 Триумфальная процессияО том, что было запечатлено на подобных арках или картинах, говорит Иосиф Флавий, описывая один из римских...

Критерий согласия Пирсона (критерий хи-квадрат)

Критерий согласия Пирсона (критерий хи-квадрат)

До конца XIX века нормальное распределение считалась всеобщим законом вариации данных. Однако К. Пирсон заметил, что эмпирические частоты могут...

Этапы процесса моделирования

Этапы процесса моделирования

Прежде всего необходимо подчеркнуть, что в этом процессе обязательно участвуют и взаимодействуют друг с другом субъект, объект исследования и...

feed-image RSS