Главная - Физика
Что изучает теоретическая метрология. Теоретическая метрология. Выдержки из истории развития метрологии

Метрология – это наука об измерениях, методах достижения их единства и требуемой точности. Слово «метрология» образовано из двух греческих слов: «метрон» – мера и «логос» – учение. Дословный перевод слова «метрология» – учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. Измерение – познавательный процесс, заключающийся в сравнении данной величины с известной величиной, принятой за единицу.

Предметом метрологии является обработка количественной информации о свойствах объектов и процессов с заданной достоверностью.

Меры на Руси: длина – аршин, сажень (3 аршина), верста; вес – пуд (16,4 кг); жидкие тела – бочки, ведра, кружки, бутылки.

В XV–XVIII вв. в связи с бурным ростом науки появилась необходимость измерения (барометры, гидрометры, манометры (давление воды), паровые машины (мощность измеряется в лошадиных силах)).

В XIX–XX вв. происходят новые физические открытия, появляется необходимость измерения в атомной и молекулярной физике. В 1827 г. в России образована комиссия образцовых мер и весов. Д.И. Менделеев сыграл большую роль в становлении метрологической службы, возглавляя ее с 1892 по1907 г. В 1970 г. образован Госстандарт СССР, в 1993 г. Госстандарт преобразован в Госстандарт России.

В современном понимании метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. К основным направлениям метрологии относятся:

– общая теория измерений;

– единицы физических величин и их системы;

– методы и средства измерений; методы определения точности измерений;

– основы обеспечения единства измерений и единообразия средств измерения;

– эталоны и образцовые средства измерений; методы передачи размеров единиц от эталонов и образцовых средств измерений рабочим средствам измерений.

Основным законодательным документом в метрологии является Закон «Об обеспечении единства измерений», принят в 1992 г., который направлен на защиту прав и интересов граждан, экономики страны от отрицательных последствий, недостоверных результатов измерений.

Метрологию подразделяют на теоретическую, прикладную и законодательную.

Теоретическая метрология занимается вопросами фундаментальных исследований, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерения.

Прикладная (практическая) метрология занимается вопросами практического применения в различных сферах деятельности результатов теоретических исследований в рамках метрологии.

Законодательная метрология включает совокупность взаимообусловленных правил и норм, направленных на обеспечение единства измерений, которые возводятся в ранг правовых положений (уполномоченными на то органами государственной власти), имеют обязательную силу и находятся под контролем государства. Ее основная задача – создание и совершенствование системы государственных стандартов, которые устанавливают правила, требования и нормы, определяющие организацию и методику проведения работ по обеспечению единства и точности измерений, а также организация и функционирование соответствующей государственной службы.

Метрология возникла как наука о различных мерах и соотношениях между ними. Слово метрология образовано из двух греческих слов: «метрон» -- мера и «логос» -- учение, что буквально можно перевести как «учение о мерах».

Измерения являются одним из важнейших путей познания природы, дают количественную характеристику окружающего нас мира, помогают раскрыть действующие в природе закономерности. Д. И. Менделеев, подчеркивая значение измерений для науки, писал, что «наука начинается с тех пор, как начинают измерять... точная наука немыслима без меры».

Измерения имеют большое значение в современном обществе. Они дают возможность обеспечить взаимозаменяемость узлов и деталей, совершенствовать технологию, безопасность труда и других видов человеческой деятельности, качество продукции.

Круг величин, подлежащих измерению, определяется разнообразием явлений, с которыми приходится сталкиваться человеку. Например, необходимость измерения длины, площади, объема, веса, механических, тепловых, электрических, световых и других величин.

Сравнение опытным путем измеряемой величины с другой, подобной ей, принятой за единицу, составляет общую основу любых измерений.

Разделом науки, изучающей измерения, является метрология.

Метрология - это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности; это одно из звеньев цепи между наукой и производством.

В метрологии решаются следующие основные задачи: разработка общей теории измерений единиц физических величин и их систем, разработка методов и средств измерений, методов определения

В настоящее время, в век ускоренного научно-технического прогресса, это понятие значительно расширено, так как, только обеспечив высокое качество измерений и контроля, можно достичь высокого качества продукции. При этом следует учитывать также юридические и экономические аспекты метрологической деятельности. В настоящее время метрология подразделяется по отраслям: строительная, медицинская, квантовая, спортивная и др. Однако для всех характерны единые принципы, а во многих случаях единые методы и способы.

Измерения являются одним из самых древних занятий в познавательной деятельности человека. Их возникновение относится к истокам материальной культуры человечества.

В древнейшие времена люди обходились только счетом однородных объектов -- голов скота, числа воинов и тому подобное. Такой счет не требовал введения понятия физической величины и установления условных единиц измерения. Не было потребности в изготовлении и использовании специальных технических средств для проведения счета. Однако по мере развития общества появилась необходимость в количественной оценке различных величин -- расстояний, веса, размеров, объемов и так далее. Эту оценку старались свести к счету, для чего выбирались природные и антропологические единицы. Например: время измерялось в сутках, годах; линейные размеры -- в локтях, ступнях; расстояния -- в шагах, сутках пути.

Человечество на всем протяжении своего развития сталкивалось с необходимостью определения и оценки характерных свойств предметов и явлений, которые его окружали. Причем, если вначале число этих свойств было ограниченным, а знания о них были элементарными (длина, масса, время), то с течением времени и развитием науки и техники информация о них резко увеличилось как количественно, так и качественно.

Позже, в процессе развития промышленности, были созданы специальные устройства -- средства измерений, предназначенные для количественной оценки различных величин. Так появились часы, весы, меры длины и другие измерительные устройства.

Наука и промышленность не могут существовать без измерений. Каждую секунду в мире производятся миллиарды измерительных операций, результаты которых используются для обеспечения надлежащего качества и технического уровня выпускаемой продукции, обеспечения безопасной и безаварийной работы транспорта, для медицинских и экологических диагнозов и других важных целей. Практически нет ни одной сферы деятельности человека, где бы интенсивно не использовались результаты измерений, испытаний и контроля. Для их получения задействованы многие миллионы человек и большие финансовые средства. Примерно 15% общественного труда затрачивается на проведение измерений. По оценкам экспертов от 3 до 6% валового национального продукта (ВНП) передовых индустриальных стран тратится на измерения и связанные с ними операции.

Основа любой формы управления, анализа, прогнозирования, планирования, контроля или регулирования Ї достоверная информация, которая может быть получена лишь путем измерения требуемых физических величин, параметров и показателей. И естественно, что только высокая и гарантированная точность результатов измерений обеспечивает правильность принимаемых решений. Современная наука и техника позволяют выполнять многочисленные и точные измерения, однако затраты на них становятся соизмеримыми с затратами на исполнительные операции.

В промышленности строительных материалов и строительном комплексе при изготовлении продукции (на технологических линиях) и монтаже строительных конструкций (на строительных площадках) особенно важны контрольно-измерительные операции, от достоверности которых зависят как качество продукции, так и безопасность жизни людей. Поэтому для студентов технологических и строительных специальностей знание основ метрологии необходимо.

На определенном этапе своего развития измерения стали причиной возникновения метрологии. Долгое время последняя существовала как описательная наука, констатирующая сложившиеся в обществе соглашения о мерах используемых величин. Развитие науки и техники привело к использованию множества мер одних и тех же величин, применяемых в различных странах. Так, расстояние в России измерялось верстами, а в Англии -- милями. Все это существенно затрудняло сотрудничество между государствами в торговле, науке.

С целью унифицировать единицы физических величин, сделать их независимыми от времени и разного рода случайностей во Франции была разработана метрическая система мер. Эта система строилась на основе естественной единицы -- метра, равного одной сорокамиллионной части меридиана, проходящего через Париж. За единицу массы принимался килограмм -- масса кубического дециметра чистой воды при температуре + 4°С. Учредительное собрание Франции 26 марта 1791 г. утвердило предложения Парижской академии наук. Это явилось серьезной предпосылкой для проведения международной унификации единиц физических величин.

В 1832 г. К. Гаусс предложил методику построения систем единиц физических величин как совокупности основных и производных величин. Он построил систему единиц, названную абсолютной, в которой за основу были приняты три произвольные, независимые друг от друга единицы: длины -- миллиметр, массы -- миллиграмм и времени -- секунда.

В 1835 г. в России был издан указ "О системе Российских мер и весов", в котором были утверждены эталоны длины (платиновая сажень) и массы (платиновый фунт). В 1842 г. на территории Петропавловской крепости в Санкт-Петербурге в специально построенном здании открылось первое метрологическое учреждение России -- Депо образцовых мер и весов. В нем хранились эталоны и их копии, изготавливались образцовые меры для передачи в другие города, проводились сличения российских мер с иностранными. Деятельность Депо регламентировалась "Положением о мерах и весах", которое положило начало государственному подходу к обеспечению единства измерений в стране. В 1848 г. в России вышла первая книга по метрологии -- "Общая метрология", написанная Ф.И. Петрушевским. В этой работе описаны меры и денежные знаки различных стран.

В 1875 г. семнадцать государств, в том числе и Россия, на дипломатической конференции подписали Метрическую конвенцию, к которой в настоящее время примкнула 41 страна мира. Согласно этой конвенции устанавливается международное сотрудничество подписавших ее стран. Для этого было создано Международное бюро мер и весов (МБМВ), находящееся в г.Севре близ Парижа. В нем хранятся международные прототипы ряда мер и эталоны единиц некоторых физических величин. В соответствии с конвенцией для руководства деятельностью МБМВ был учрежден Международный комитет мер и весов (МКМВ), в который вошли ученые из различных стран. Сейчас при МКМВ действуют семь консультативных комитетов: по единицам, определению метра, секунды, термометрии, электричеству, фотометрии и по эталонам для измерения ионизирующих излучений.

Очень много для развития отечественной метрологии сделал Д.И. Менделеев. Период с 1892 по 1917 г. называют менделеевским этапом развития метрологии. В 1893 г. на базе Депо образцовых мер и весов была утверждена Главная палата мер и весов, управляющим которой до последних дней жизни был Д. И. Менделеев. Она стала одним из первых в мире научно-исследовательских учреждений метрологического профиля.

До 1918 г. метрическая система внедрялась в России факультативно, наряду со старой русской и английской (дюймовой) системами. Значительные изменения в метрологической деятельности стали происходить после подписания Советом народных комиссаров РСФСР декрета "О введении международной метрической системы мер и весов". Внедрение метрической системы в России происходило с 1918 по 1927 г. После Великой Отечественной войны и до сего времени метрологическая работа в нашей стране проводится под руководством Государственного комитета по стандартам (Госстандарт).

В 1960 г. XI Международная конференция по мерам и весам, приняла Международную систему единиц физических величин -- систему СИ. Сегодня метрическая система узаконена более чем в 124 странах мира.

Метрология делится на три самостоятельных и взаимно дополняющих раздела, основным из которых является "Теоретическая метрология". В нем излагаются общие вопросы теории измерений. Раздел "Прикладная метрология" посвящен изучению вопросов практического применения в различных сферах деятельности результатов теоретических исследований. В заключительном разделе "Законодательная метрология" рассматриваются комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений.

Предметом метрологии является извлечение количественной информации о свойствах объектов и процессов с заданной точностью и достоверностью. Средства метрологии -- это совокупность средств измерений и метрологических стандартов, обеспечивающих их рациональное использование.

Академик Б.М. Кедров предложил так называемый "треугольник наук", в "вершинах" которого находятся естественные, социальные и философские науки. По этой классификации метрология попадает на сторону "естественные -- социальные науки". Это связано с тем, что социальная значимость результатов, получаемых метрологией, очень велика. Например, отрицательные последствия от недостоверных результатов измерений в отдельных случаях могут быть катастрофическими. Правомерно и помещение метрологии на стороне "естественные -- философские науки". Это обусловлено значением метрологии для теории познания.

Говоря о "месте" любой науки в системе наук, Б.М. Кедров указывал: "Место в системе наук выражает собой, во-первых, совокупность всех связей и отношений между данной наукой и непосредственно соприкасающимися с ней науками, а через них и с более отдаленными от нее, следовательно, со всей суммой человеческих знаний; это отвечает рассмотрению вопроса с его структурной стороны; во-вторых, определенную ступень развития научного познания, отражающую соответствующую ступень развития самого внешнего мира, а тем самым наличие переходов между данной наукой и непосредственно примыкающими к ней в общем ряду наук; это отвечает рассмотрению вопроса с его исторической или генетической стороны". Без измерений не может обойтись ни одна наука, поэтому метрология как наука об измерениях находится в тесной связи со всеми другими науками.

Основным понятием метрологии является измерение. Согласно ГОСТ 16263, измерение -- это нахождение значения физической величины опытным путем с помощью специальных технических средств. Значимость измерений выражается в трех аспектах: философском, научном и техническом.

Философский аспект состоит в том, что измерения являются важнейшим универсальным методом познания физических явлений и процессов. В этом смысле метрология как наука об измерениях занимает особое место среди остальных наук. Возможность измерения обуславливается предварительным изучением заданного свойства объекта измерений, построением абстрактных моделей как самого свойства, так и его носителя -- объекта измерения в целом. Поэтому место измерения определяется не среди первичных (теоретических или эмпирических) методов познания, а среди вторичных (квантитативных), обеспечивающих достоверность измерения. С помощью вторичных познавательных процедур решаются задачи формирования данных (фиксации результатов познания). Измерение с этой точки зрения представляет собой метод кодирования сведений, получаемых с помощью различных методов познания, т.е. заключительную стадию процесса познания, связанную с регистрацией получаемой информации.

Научный аспект измерений состоит в том, что с их помощью в науке осуществляется связь теории и практики. Без измерений невозможна проверка научных гипотез и соответственно развитие науки.

Измерения обеспечивают получение количественной информации об объекте управления или контроля, без которой невозможно точное воспроизведение всех заданных условий технического процесса, обеспечение высокого качества изделий и эффективного управления объектом. Все это составляет технический аспект измерений.

Как и в любой науке, в метрологии необходимо сформулировать основные понятия, термины и постулаты, разработать учение о физических единицах и методологию. Данный раздел особенно важен ввиду того, что в основе отдельных областей измерений лежат специфические представления и в теоретическом плане области развиваются изолированно. При этих условиях недостаточная разработанность основных представлений заставляет решать аналогичные задачи, которые, по сути, являются общими, заново в каждой области.

Основные понятия и термины. Этот подраздел занимается обобщением и уточнением понятий, сложившихся в отдельных областях измерений с учетом специфики метрологии. Главной задачей является создание единой системы основных понятий метрологии, которая должна служить базой для ее развития. Значение системы понятий определяется значимостью самой теории измерений и тем, что указанная система стимулирует взаимопроникновение методов и результатов, наработанных в отдельных областях измерений.

Постулаты метрологии. В этом подразделе развивается аксиоматическое построение теоретических основ метрологии, выделяются такие постулаты, на основе которых можно построить содержательную и полную теорию и вывести важные практические следствия.

Учение о физических величинах. Основной задачей подраздела является построение единой системы физических величин, т.е. выбор основных величин системы и уравнений связи для определения производных величин. Система физических величин служит основой для построения системы единиц физических величин, рациональный выбор которой важен для успешного развития теории и практики метрологического обеспечения.

Методология измерений. В подразделе разрабатывается научная организация измерительных процессов. Вопросы метрологической методологии являются весьма существенными, поскольку она объединяет области измерений, различные по физической природе измеряемых величин и методам измерений. Это создает определенные трудности при систематизации и объединении понятий, методов и опыта, накопленного в различных областях измерений. К числу основных направлений работ по методологии относятся:

1) переосмысление основ измерительной техники и метрологии в условиях существенного обновления арсенала методов и средств измерений и широкого внедрения микропроцессорной техники;

2) структурный анализ измерительных процессов с системных позиций;

3) разработка принципиально новых подходов к организации процедуры измерений.

Теория единства измерений (Теория воспроизведения единиц физических величин и передачи их размеров) -- этот раздел традиционно является центральным в теоретической метрологии. Он включает в себя: теорию единиц физических величин, теорию исходных средств измерений (эталонов) и теорию передачи размеров единиц физических величин.

Теория единиц физических величин. Основная цель подраздела -- совершенствование единиц физических величин в рамках существующей системы величин, заключающееся в уточнении и переопределении единиц. Другой задачей является развитие и совершенствование системы единиц физических величин, т.е. изменение состава и определений основных единиц. Работы в этом направлении проводятся постоянно на основе использования новых физических явлений и процессов.

Теория исходных средств измерений (эталонов). В данном подразделе рассматриваются вопросы создания рациональной системы эталонов единиц физических величин, обеспечивающих требуемый уровень единства измерений. Перспективное направление совершенствования эталонов -- переход к эталонам, основанным на стабильных естественных физических процессах. Для эталонов основных единиц принципиально важным является достижение максимально возможного уровня для всех метрологических характеристик.

Теория передачи размеров единиц физических величин. Предметом изучения подраздела являются алгоритмы передачи размеров единиц физических величин при централизованном и децентрализованном их воспроизведении. Указанные алгоритмы должны быть основаны как на метрологических, так и на технико-экономических показателях.

Теория построения средств измерений. В разделе обобщается опыт конкретных наук в области построения средств и методов измерений. В последние годы все большее значение приобретают знания, накопленные при разработке электронных средств измерений электрических и особенно неэлектрических величин. Это связано с бурным развитием микропроцессорной и вычислительной техники и ее активным использованием при построении средств измерений, что открывает новые возможности при обработке результатов. Важной задачей является разработка новых и совершенствование известных измерительных преобразователей.

Теория точности измерений. В данном разделе метрологии обобщены методы, развиваемые в конкретных областях измерений. Он состоит их трех подразделов: теории погрешностей, теории точности средств измерений и теории измерительных процедур.

Теория погрешностей. Этот подраздел является одним из центральных в метрологии, поскольку результаты измерений объективны настолько, насколько правильно оценены их погрешности. Предметом теории погрешностей является классификация погрешностей измерений, изучение и описание их свойств. Сложившееся исторически деление погрешностей на случайные и систематические, хотя и вызывает справедливые нарекания, тем не менее продолжает активно использоваться в метрологии. Как известная альтернатива такому делению погрешностей может рассматриваться развиваемое в последнее время описание погрешностей на основе теории нестационарных случайных процессов. Важной частью подраздела является теория суммирования погрешностей.

Теория точности средств измерений. Подраздел включает: теорию погрешностей средств измерений, принципы и методы определения и нормирования метрологических характеристик средств измерений, методы анализа их метрологической надежности.

Теория погрешностей средств измерений наиболее детально разработана в метрологии. Значительные знания накоплены и в конкретных областях измерений, на их основе развиты общие методы расчета погрешностей средств измерений. В настоящее время в связи с усложнением средств измерений, развитием микропроцессорных измерительных устройств актуальной стала задача по расчету погрешностей цифровых средств измерений вообще и измерительных систем и измерительно-вычислительных комплексов в частности.

Принципы и методы, определения и нормирования метрологических характеристик средств измерений достаточно хорошо разработаны. Однако они требуют модификации с учетом специфики метрологии и в первую очередь тесной связи определения метрологических характеристик СИ с их нормированием. К числу не до конца решенных задач следует отнести определение динамических характеристик средств измерений и градуировочных характеристик первичных измерительных преобразователей. По мере совершенствования средств обработки электрических измерительных сигналов наиболее существенные метрологические проблемы концентрируются вокруг выбора первичного преобразователя. Ввиду разнообразия принципов действия и типов средств измерений, а также повышения требуемой точности измерений появляется проблема выбора нормируемых метрологических характеристик средств измерений.

Теория метрологической надежности средств измерений по своей целевой направленности связана с общей теорией надежности. Однако специфика метрологических отказов и, прежде всего, непостоянство во времени их интенсивности делают невозможным автоматическое перенесение методов классической теории надежности в теорию метрологической надежности. Необходима разработка специальных методов анализа метрологической надежности средств измерений.

Теория измерительных процедур. Повышение сложности измерительных задач, постоянный рост требований к точности измерений, усложнение методов и средств измерений обуславливают проведение исследований, направленных на обеспечение рациональной организации и эффективного выполнения измерений. При этом главную роль играет анализ измерений как совокупности взаимосвязанных этапов, т.е. как процедуры. Подраздел включает теорию методов измерений; методы обработки измерительной информации; теорию планирования измерений; анализ предельных возможностей измерений.

Теория методов измерений -- подраздел, посвященный разработке новых методов измерений и модификации существующих, что связано с ростом требований к точности измерений, диапазонам, быстродействию, условиям проведения измерений. С помощью современных средств измерений реализуются сложные совокупности классических методов. Поэтому остается актуальной традиционная задача совершенствования существующих методов и исследования их потенциальных возможностей с учетом условий реализации.

Методы обработки измерительной информации, используемые в метрологии, основываются на методах, которые заимствуются из математики, физики и других дисциплин. В связи с этим актуальна задача обоснованности выбора и применения того или иного способа обработки измерительной информации и соответствия требуемых исходных данных теоретического способа тем, которыми реально располагает экспериментатор.

Теория планирования измерений -- область метрологии, которая весьма активно развивается. К числу ее основных задач относятся уточнение метрологического содержания задач планирования измерений и обоснование заимствований математических методов из общей теории планирования эксперимента.

Анализ предельных возможностей измерений на данном уровне развития науки и техники позволяет решить такую главную задачу, как исследование предельной точности измерений при помощи конкретных типов или экземпляров средств измерений.

Слово «метрология» образовано из двух греческих слов: мет- рон - мера и логос - учение. Дословный перевод слова «метрология» - учение о мерах. Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. С конца прошлого века благодаря прогрессу физических наук метрология получила существенное развитие. Большую роль в становлении современной метрологии как одной из наук физического цикла сыграл Д. И. Менделеев, руководивший отечественной метрологией в период 1892-1907 гг.

Метрология в ее современном понимании - наука об измерениях, методах, средствах обеспечения их единства и способах достижения требуемой точности.

Единство измерений - такое состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разных местах, в разное время, с использованием разных методов и средств измерений.

Точность измерений характеризуется близостью их результатов к истинному значению измеряемой величины.

Таким образом, важнейшими задачами метрологии являются усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

Классификация и основные характеристики измерений

Измерение является важнейшим понятием в метрологии. Это организованное действие человека, выполняемое для количественного познания свойств физического объекта с помощью определения опытным путем значения какой-либо физической величины .

Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений, и способов выражения этих результатов.

По характеру зависимости измеряемой величины от времени измерения разделяются:

  • на статические, при которых измеряемая величина остается постоянной во времени;
  • динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

Статическими измерениями являются, например, измерения размеров тела, постоянного давления, динамическими - измерения пульсирующих давлений, вибраций.

По способу получения результатов измерений их разделяют:

  • на прямые;
  • косвенные;
  • совокупные;
  • совместные.

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q - искомое значение измеряемой величины, а X - значение, непосредственно получаемое из опытных данных.

При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы с помощью весов и др. Прямые измерения широко применяются в машиностроении, а также при контроле технологических процессов (измерение давления, температуры и др.).

Косвенные - это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т. е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят путем вычисления по формуле Q= F(x x , х 2 , ..., %), где Q - искомое значение косвенно измеряемой величины; F - функциональная зависимость, которая заранее известна, х 1 ,х 2 ,..., x N - значения величин, измеренных прямым способом.

Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка.

Совокупные - это производимые одновременно измерения нескольких одноименных величин, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Примером совокупных измерений является определение массы отдельных гирь набора (калибровка по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).

Совместные - это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимостей между ними.

В качестве примера можно назвать измерение электрического сопротивления при 20 °С и температурных коэффициентов измерительного резистора по данным прямых измерений его сопротивления при различных температурах.

По условиям, определяющим точность результата, измерения делятся на три класса.

1. Измерения максимально возможной точности, достижимой при существующем уровне техники.

К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения, гиромагнитного отношения протона и др.).

К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения.

К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант.

Примером абсолютных измерений может служить определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.

Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.

В качестве примера относительных измерений можно привести измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 м 3 воздуха к количеству водяных паров, которое насыщает 1 м 3 воздуха при данной температуре.

Основными характеристиками измерений являются: принцип измерений, метод измерений, погрешность, точность, правильность и достоверность.

Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела с помощью взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

Метод измерений - совокупность приемов использования принципов и средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства.

Погрешность измерений - разность между полученным при измерении X" и истинным Q значениями измеряемой величины:

Погрешность вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а также недостаточным опытом наблюдателя или особенностями его органов чувств.

Точность измерений - это характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины.

Количественно точность можно выразить величиной, обратной модулю относительной погрешности:

Например, если погрешность измерений равна КГ 4 , то точность равна 10 4 .

Правильность измерения определяется как качество измерения, отражающее близость к нулю систематических погрешностей результатов (т. е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в которой выполнено измерение, отличается от ее истинного размера (по определению), т. е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.

Важнейшей характеристикой качества измерений является их достоверность ; она характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Результаты измерений, достоверность которых неизвестна, не представляют ценности и в ряде случаев могут служить источником дезинформации.

Наличие погрешности ограничивает достоверность измерений, т. е. вносит ограничение в число достоверных значащих цифр числового значения измеряемой величины и определяет точность измерений.

Метрология - это наука об измерениях, методах и средствах обеспечения единства измерений и способах достижения требуемой точности, а также область знаний и вид деятельности, связанные с измерениями

Теоретическая метрология - это раздел метрологии, занимающийся фундаментальными исследованиями, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерений

Прикладная (практическая) метрология занимается применением на практике результатов теоретических исследований в области метрологии

Законодательная метрология включает совокупность правил и норм, которые имеют ранг правовых положений и находятся под контролем государства. Эти правила и нормы обеспечивают единство измерений

Единство измерений - такое состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разных местах, в разное время, с использованием разных методов и средств измерений

Метрологический надзор - это техническая и административная деятельность компетентных лиц и властей, целью которой является контроль соблюдения метрологических законов и правил

Человек появляется на свет, еще не имея имени, но сразу становятся известными его рост и вес. C первых минут жизни ему приходится сталкиваться с линейкой, весами, термометром. Поиск соотношения между измеряемой величиной и единицей этой величины есть измерение. Измерение не ограничено физическими количествами, измеряться могут любые вообразимые сущности, такие как степень неопределенности, доверие потребителя или скорость падения цен на бобы.

Измерения в физике и промышленности - процесс сравнения физических количеств реальных объектов и событий. Стандартные объекты и события используются как единицы сравнения, а результат сравнения представляется, по крайней мере, двумя числами, где одно число показывает отношение между измеряемой величиной и единицей сравнения, а вторым числом оценивается статистическая неопределенность, или ошибка измерения (в философском смысле). Единицей длины, например, может служить длина ступни человека (фут), а длину лодки можно выразить количеством футов. Таким образом, измерение - это сравнение со стандартом. Меры являются стандартом для измерений. Определение количественной характеристики объекта путем измерения опирается на существование явных или неявных мер. Если я говорю, что мне 20, я указываю измерение, не указывая применимый стандарт. Я могу подразумевать, что мне 20 лет. В данном случае мерой является год.

История развития измерений - это один из разделов истории науки и техники. Метр был стандартизирован как единица длины после французской революции, и принят с тех пор в большинстве стран мира. В Российской Федерации применяется метрическая система измерений. Мы привыкли к килограммам, литрам и сантиметрам. А ведь метрической системе, которой мы пользуемся, немногим более ста лет. 21 мая 1875 г. она была утверждена во Франции и явилась обязательной для всех государств. Во многих странах старинные меры веса, длины и объема используются до сих пор. Соединенные Штаты и Великобритания находятся в процессе перехода к системе СИ.

Измерение многих величин является очень трудным и неточным. Трудности могут быть связаны с неопределенностью или с ограниченным временем для измерения. Очень трудно измерить, например, знания, эмоции и ощущения человека.

Метрология занимается изучением измерений. Она пронизывает все сферы деятельности человека, отражает развитие науки и техники, взаимоотношения субъектов хозяйственной деятельности, межгосударственные взаимоотношения и в целом свидетельствует об уровне цивилизации.

Основной задачей метрологии является обеспечение единства измерений, которое всегда было важнейшей государственной функцией.

Метрология - это наука об измерениях, методах и средствах обеспе­чения их единства и способах достижения требуемой точности. Слово «метрология» происходит от греческих слов «метро» - мера и «ло­гос» - учение.

Метрологическое обеспечение (МО) - это установление и примене­ние научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности из­мерений.

Научной основой МО является метрология. Организационной осно­вой МО выступает метрологическая служба РФ, состоящая из государст­венной и ведомственных метрологических служб, базирующихся на ос­новных положениях законодательной метрологии. Нормативно-право­вую основу МО составляют комплекс правил, требований и норм, уста­новленных в стандартах и нормативных документах по стандартизации в РФ.

Основой технической базы МО являются средства измерений и конт­роля. Техническая база МО строится на эталонной базе РФ, которая со­стоит из более 150 государственных первичных и специальных эталонов, 60 вторичных (рабочих) эталонов, обеспечивающих хранение и воспро­изведение 70 физических величин в линейно-угловых, механических, температурных, теплофизических, электрических, магнитных, радиотех­нических, оптических и других видах измерений, в различных амплитуд­ных, частотных и динамических диапазонах. Конечная модель МО - свести к рациональному минимуму возможность принятия ошибочных решений по результатам измерений, испытаний и контроля.

Основные проблемы, изучаемые в метрологии:

Общая теория измерений;

Единицы физических величин и их системы;

Методы и средства измерений, методы определения точности изме­рений;

Основы обеспечения единства измерений и единообразия средств измерений;

Эталоны и образцовые средства измерений;

Методы передачи размера единиц от эталонов или образцовых средств измерений рабочим средствам измерений.

Процедура измерения состоит в общем случае из следующих этапов: принятие модели объекта измерения, выбор метода измерения и средства измерения, проведение эксперимента для получения результата. Все эти составляющие приводят к тому, что результат измерения отличается от истинного значения измеряемой величины.

Метрологические характеристики. Характеристики, влияющие на результаты и погрешности измерений, называютметрологическими ха­рактеристиками. От того, насколько они точно будут выдержаны при из­готовлении и стабильны при эксплуатации, зависит точность результа­тов. К ним относятся функция преобразования (статическая характеристика преобразования), чувствительность средства измерений, цена деления шкалы, порог чувствительности, а также динамические характеристики.

Функция преобразования (статическая характеристика преобразо­вания) - функциональная зависимость между информативными пара­метрами выходного и входного сигналов средства измерений. Функцию преобразования, принимаемую для средства измерения (типа) и устанав­ливаемую в научно-технической документации на данное средство (тип), называютноминальной функцией преобразования средства (типа). Номи­нальная статическая характеристика преобразования позволяет рассчи­тать значение входной величины по значению выходной. Она может зада­ваться аналитически, таблично или графически.

Чувствительность средства измерений - отношение приращения выходного сигналаАу средства измерений к вызвавшему это приращение изменению входного сигнала Ах. В общем случае чувствительность

S = Игл Лу/Дх = dyldx.

При нелинейной статической характеристике преобразования чувст­вительность зависит от X , при линейной характеристике она постоянна. У измерительных приборов при постоянной чувствительности шкала рав­номерная, т. е. расстояние между делениями шкалы одинаковое.

Цена деления шкалы - разность значений величин, соответствую­щих двум соседним отметкам шкалы.

В приборах с равномерной шкалой цена деления постоянная; в прибо­рах с неравномерной шкалой она может быть разной на разных участках шкалы, и в этом случае нормируется минимальная цена деления. Цена деления шкалы прибора может быть определена через его абсолютную чув­ствительность и равна числу единиц измеряемой величины, приходящих­ся на одно деление шкалы прибора (постоянная прибора): С =MS .

Порог чувствительности - наименьшее изменение входной вели­чины, обнаруживаемое с помощью данного средства измерений. Порог чувствительности выражают в единицах входной величины.

К метрологическим характеристикам относятся динамические харак­теристики, т. е. характеристики инерционных свойств (элементов) изме­рительного устройства, определяющие зависимость выходного сигнала средства измерений от меняющихся во времени величин: параметров входного сигнала, внешних влияющих величин, нагрузки. Динамически­ми характеристиками являются переходная, импульсная переходная, ам­плитудно-фазовая характеристики, передаточная функция и др.

Динамические свойства средства измерений определяют динамиче­скую погрешность.

Динамическая погрешность - разность между погрешностью при­бора в динамическом режиме и его статической погрешностью.

Нормируемые метрологические характеристики. Для каждого ви­да прибора исходя из его специфики и назначения нормируется опреде­ленный комплекс метрологических характеристик, указываемый в нор­мативно-технической документации. Общий перечень нормируемых метрологических характеристик, формы их представления и способы нормирования установлены в ГОСТе. В него входят:

Пределы измерений, пределы шкалы;

Цена деления равномерной шкалы аналогового прибора или много­значной меры;

Выходной код, число разрядов кода, номинальная цена единицы наименьшего разряда цифровых приборов;

Номинальное значение однозначной меры, номинальная статиче­ская характеристика преобразования измерительного преобразователя;

Погрешность прибора;

Вариация показаний прибора или выходного сигнала преобразова­теля;

Полное входное сопротивление измерительного устройства, полное выходное сопротивление измерительного преобразователя или меры;

Неинформативные параметры выходного сигнала измерительного преобразователя или меры;

Динамические характеристики прибора.

Погрешности измерения. Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины. В зависимости от способа выражения погрешности измерения делят на абсолютные и относительные.Абсолютная погрешность измерения - разность между измеренным значениемХ ты физической величины и ее истинным значениемХ И , выра­женная в единицах измеряемой величины:

А = Х ти – Х И . (1.15)

Относительная погрешность измерения - отношение абсолютной погрешности измерения к истинному значению измеряемой величины (в %):

yOTH = (A/X)100%. (1.16)

На практике вместо истинного значения измеряемой величины ис­пользуют действительное значение Х Л , полученное с помощью образцо­вого средства измерения. Тогда выражения (1.15)и(1.16) запишутся в ви­де

Абсолютная погрешность измерения Д, определяемая выражениями (1.15) и (1.17), является суммарной погрешностью для двух составляю­щих - систематической и случайной, т. е. Д =ас + А.

Систематическая погрешность. Систематическая погреш­ность - составляющая погрешности измерения, остающаяся постоян­ной или закономерно изменяющаяся при повторных измерениях одной и той же величины. По характеру проявления систематические погрешно­сти разделяются на постоянные и переменные. Переменные в свою оче­редь могут быть прогрессирующими, периодическими и изменяющимися по сложному закону.

Постоянными систематическими погрешностями называются та­кие, которые остаются неизменными в течение всей серии данных изме­рений, например погрешность из-за неточной подгонки образцовой ме­ры, погрешность из-за неточной установки указателя прибора на ноль и т. п.

Переменные систематические погрешности изменяются в процессе измерений. Если при измерениях погрешность монотонно убывает или возрастает, то она называетсяпрогрессирующей. Например, монотонно меняется погрешность из-за разряда источника питания прибора, если ре­зультат измерений зависит от напряжения питания.

Периодическая систематическая погрешность - погрешность, зна­чение которой является периодической функцией времени. Ее примером может являться погрешность, вызванная суточными изменениями напряжения питания электрической сети. Систематическая погрешность может изменяться и по некоторомусложному закону. Таковы, например, погрешности, вызванные неточностью нанесения шкалы прибора, по­грешность электрического счетчика при различном значении нагрузки, погрешность, вызванная изменениями температуры окружающей среды, и др.

Природа и происхождение систематических погрешностей обычно определяются спецификой конкретного эксперимента. По причине воз­никновения их можно разделить на четыре основные группы: инструмен­тальные, методические, установки и субъективные.

Инструментальные погрешности зависят от погрешностей применя­емых средств измерений. Неточность градуировки, конструктивные не­совершенства и изменения характеристик прибора в процессе эксплуата­ции являются причинами инструментальных погрешностей. Их в свою очередь подразделяют на основную и дополнительную.Основная по­грешность средства измерений - это погрешность в условиях, приня­тых за нормальные, т. е. при нормальных значениях всех величин, влияю­щих на результат измерения (температуры, влажности, напряжения пита­ния и т. п.).Дополнительная погрешность средства измерений - по­грешность, дополнительно возникающая при отклонении значений влияющих величин от нормальных. Обычно различают отдельные со­ставляющие дополнительной погрешности, например температурную погрешность, погрешность из-за изменения напряжения питания и т. п. Устранение дополнительных погрешностей имеет свои особенности.

Методические погрешности происходят от несовершенства метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, влияния измерительного прибора на объект измерения. Например, измерение температуры с помощью термо­пары может содержать методическую пофешность, вызванную наруше­нием температурного режима исследуемого объекта вследствие внесения термопары в зону измерений.

Погрешности установки вызываются неправильностью применения меры, прибора или отклонением внешних условий от нормальных. На­пример, установка прибора с наклоном, наличие внешнего магнитного поля, отклонение температуры от нормальной и др.

Субъективные погрешности появляются как результат особенностей самого наблюдателя. Это может случиться, например, из-за неправильно­го направления взгляда при наблюдении за показаниями стрелочного прибора (погрешность от параллакса), из-за склонности наблюдателя к завышению или занижению результатов и др. Использование цифровых приборов и автоматических методов измерения позволяет исключить та­кого рода погрешности.

Органической называют систематическую погрешность, если ее появ­ление обусловлено только существом метода измерений или формулой, по которой вычисляется результат, и другими причинами, и не зависит от качества изготовления или условий применения средств измерения.

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону и не зависят от числа измерений. Искажения, вносимые ими в результат измерения, под­даются исключению или учету. Неисключенная или необнаруженная си­стематическая погрешность опаснее случайной. Если случайные погреш­ности определяют достоверность результата, то систематические по­грешности устойчиво его искажают.

Способы исключения систематических погрешностей. Система­тические погрешности в принципе могут быть выявлены и исключены из результатов измерения введением поправок, устранением самих источ­ников погрешности, методами двукратного измерения и замещения.

Приступая к выполнению эксперимента, следует по возможности ус­транить причины, вызывающие появление систематических погрешно­стей. Учет инструментальных погрешностей мер и приборов осуществля­ют введением поправок. Поправкой называется значение величины, од­ноименной с измеряемой, которое нужно прибавить к полученному при измерении значению величины с целью исключения систематической по­грешности. Введение поправок - наиболее широко используемый спо­соб исключения систематических инструментальных погрешностей. По­правка определяется при помощи поверки технических средств, состав­ления и использования соответствующих таблиц и графиков. Применя­ются также расчетные способы нахождения поправочных значений.

Погрешность установки устраняют соблюдением требований эксплу­атации средства измерения. Субъективную погрешность уменьшают и по возможности устраняют, используя для выполнения измерений квалифи­цированных специалистов и различные методы проверки результатов этих измерений.

Метод компенсации погрешности по знаку применяют для исключе­ния систематических погрешностей, которые в зависимости от условий измерения могут входить в результат измерения с тем или иным знаком, например погрешности от термо-ЭДС, от влияния напряженности посто­янного электрического или магнитного поля. В этом случае следует про­вести измерения дважды так, чтобы погрешность входила в результаты измерений один раз с одним знаком, а другой раз - с обратным. Среднее из результатов двух таких измерений будет свободно от систематической погрешности. При проведении автоматических измерений широко ис­пользуют схемные методы коррекции систематических погрешностей, например компенсационное включение преобразователей, различные це­пи температурной и частотной коррекции и др.

Метод замещения заключается в том, что измеряемая величина заме­щается известной величиной, получаемой при помощи регулируемой ме­ры. Если такое замещение производится без каких-либо других измене­ний в экспериментальной установке и после замещения установлены те же показания приборов, то измеряемая величина равна известной величи­не, значение которой отсчитывается по указателю регулируемой меры. Этот прием позволяет исключить постоянные систематические погреш­ности. Погрешность измерения при использовании метода замещения оп­ределяется погрешностью меры и погрешностью, возникающей при от­счете значения величины, замещающей неизвестную.

Следует отметить, что исключение систематических погрешностей указанными выше способами выполняется до уровня неисключенных си­стематических погрешностей, оценку суммарной составляющей которой находят, исходя из сведений о метрологических характеристиках исполь­зованных технических средств. Если таких сведений недостаточно, то может быть полезным сравнение измеренных значений с аналогичными результатами, полученными в других лабораториях.

Использование микропроцессорных устройств в измерительных при­борах позволяет практически полностью исключить или осуществить коррекцию многих видов систематической составляющей погрешности, особенно инструментальных погрешностей. Автоматическое введение поправок, связанных с неточностями градуировки, расчет и исключение дополнительных погрешностей, коррекция аддитивной и мультиплика­тивной составляющих погрешности измерения позволяют существенно повысить точность измерений.

Случайная погрешность. Случайная составляющая погрешности при повторных измерениях одной и той же величины изменяется случай­ным образом. Обычно она является следствием одновременного действия многих независимых причин, каждая из которых в отдельности мало вли­яет на результат измерения. Случайные погрешности не могут быть иск­лючены из результата измерения, но теория вероятности и математиче­ская статистика позволяют оценить результат измерения при наличии случайных погрешностей. Они характеризуются свойствами, которые формулируют двумя аксиомами:

1. Аксиома случайности - при очень большом числе измерений слу­чайные погрешности, равные по величине и различные по знаку, встреча­ются одинаково часто. Число отрицательных погрешностей равно числу положительных.

2. Аксиома распределения - малые погрешности встречаются чаще, чем большие. Очень большие погрешности не встречаются. Принятие этих двух аксиом позволяет рассматривать случайные погрешности как случайные величины, подчиняющиеся некоторому симметричному зако­ну распределения. При оценке точности полученного результата необхо­димо учитывать вид закона распределения случайных погрешностей. В практике электрических измерений встречаются различные законы рас­пределения случайных погрешностей: равномерный симметричный за­кон распределения (погрешности округления, отсчета, квантования), нормальный закон распределения (погрешности от тепловых шумов, суммарная погрешность большого числа составляющих), двухмодальный, треугольный (закон Симпсона) и др.

Определение доверительных границ Д г случайной составляющей по­грешности результата измерения А производится на основе вычисленно­го значения оценки среднего квадратического отклонения -а(Х) с уче­том заданной доверительной вероятностиP UOS и числа наблюденийп. Ис­ходя из предположения о нормальном законе распределения случайной величиныX при ограниченном числе измерений (меньше 30) и заданной доверительной вероятностиР дов , доверительные границы случайной со­ставляющей пофешности результата определяют с учетом поправочного коэффициента Стьюдентаt (ri ):

± A r = ±t (n ) a (X ).

При большом числе измерений (> 30) и нормальном законе распреде­ления случайной величины ЛГ вероятность нахождения пофешности Р лов внутри заданных границ ± А г равна

Р дов (- А г < А < А г) = 2Ф(А г /а(Л)),

где Ф(г) - табличный интеграл функции Лапласа;z - аргумент функ­ции Лапласа.

Доверительный интервал и доверительную вероятность выбирают в зависимости от конкретных условий эксперимента. По зависимости от значения измеряемой величины абсолютная пофешности измерения А, определяемая выражением (1.15) и (1.17), является также суммарной по­грешностью для двух составляющих: аддитивной составляющей, значе­ния которой не зависят от значения измеряемой величины X , и мульти­пликативной составляющей, значения которой зависят от значенияX , т. е.

А = А адд + Д м. (1.18)

Результат измерения пригоден для дальнейшего использования лишь тогда, когда помимо измеренного значения физической величины в нем указывается и значение погрешности. Погрешность результата прямого однократного измерения зависит от многих факторов, но в первую очередь она определяется погрешностью используемых средств измерения. Поэтому в первом приближении погрешность результата измерения мож­но принять равной погрешности, которой в данной точке шкалы прибора характеризуется используемое средство измерений. Вычисляться долж­ны как абсолютные, так и относительные погрешности результата изме­рения, так как первая из них нужна для округления результата и его пра­вильной записи, а вторая - для однозначной сравнительной характери­стики его точности.

Результаты многократных наблюдений, полученные при прямых из­мерениях физической величины, называются равноточными (равнорас-сеяннъши), если они являются независимыми, одинаково распределенны­ми случайными величинами. Измерения в этом случае проводятся одним наблюдателем в одинаковых условиях внешней среды и с помощью одно­го и того же средства измерения. Точную оценку действительного значе­ния измеряемой величины при равноточных измерениях можно получить лишь путем статистической обработки группы результатов измерений.

Формы представления результатов измерения. Конечный резуль­тат измерений представляется в одной из четырех форм:

1) интервалом, в котором с установленной вероятностью находится суммарная погрешность измерения;

2) интервалом, в котором с установленной вероятностью находится систематическая составляющая погрешности, стандартной аппроксима­цией функции распределения случайной составляющей погрешности из­мерения и средним квадратическим отклонением случайной составляю­щей погрешности измерения;

3) стандартными аппроксимациями функции распределения система­тической и случайной составляющих погрешности измерения и их сред­ними квадратическими отклонениями;

4) функциями распределения систематической и случайной составля­ющих погрешности измерения.

Выбор формы представления результата измерения определяется на­значением измерений и характером использования их результатов.

Неравноточные измерения. В практике измерений имеют место также инеравноточные измерения, когда измерения одной и той же физи­ческой величины проводятся несколькими наблюдателями различной квалификации и опыта, на приборах разного класса точности или в тече­ние нескольких дней. Полученные значения средних арифметических от­дельных выборок отличаются друг от друга, поэтому при оценке резуль­тата измерения и его погрешности учитывается степень доверия к полу­ченным выборочным средним в виде «веса», который устанавливается для каждой серии измерений пропорционально одному из параметров (вероятности, числу измерений, величине среднего квадратического отклонения), либо методом экспертных оценок. Чем больше степень дове­рия к результату, тем больше число, выражающее вес. Если установлено, что все выборки неравноточных измерений принадлежат одной генераль­ной совокупности, то определяют статистические параметры этой гене­ральной совокупности и устанавливают границы доверительной вероят­ности по распределению Стьюдента.

Значение измеряемой величины, наиболее близкое к истинному зна­чению, составляет:

Лп - -

где Т], Х 2 , ...,Х„ - средние значения для отдельных групп измерений;р", Р 2, -, - их вес;xq - среднее взвешенное значение измеряемой величи­ны.

В основу вычисления обычно кладут средние квадратические по­грешности. Веса соответственных групп измерений считают обратно пропорциональными их дисперсиям, т. е. используют зависимость Р\ : Р\ : Р\ :Р\ = 1/а 2 , : 1/а 2 2: 1/ст 2 3: 1/а 2 м.

Средняя квадратическая погрешность средневзвешенного значения So определяется по формуле

где Р i - вес каждого результата измерений;т - число рядов измере­ний.

Косвенные измерения. Это измерения, при которых искомое значе­ние физической величины Q находят на основании известной зависимо­стиQ = f (x , у, z ) между этой величиной и величинамих, у, z , подвергае­мыми прямым измерениям. Например, измерение мощностиР =UI по измеренным значениям токаI и напряженияU .

Для определения оценки систематической погрешности результа­та косвенного измерения, используя разложение функцииQ = f (x , у, z ) в ряд Тейлора и ограничиваясь только его линейной частью, получают

Величины df / dx , df /dy , df / dz называют частными производными кос­венного измерения.

Случайная погрешность косвенного измерения

где GO - средняя квадратическая погрешность результата косвенного из­мерения.

Закон суммирования погрешностей. Задача о суммировании по­грешностей возникает при анализе как отдельных измерительных преоб­разователей, так и измерительного устройства в целом. Если измеритель­ное устройство - это цепь измерительных преобразователей, то общее число составляющих его погрешности может достигать 10...50 и более.

Единственный метод выделения систематической составляющей по­грешности аппаратуры - метод статистических испытаний, т. е. про­ведение многократных повторных поверок аппаратуры. Если при этом погрешность определенного знака и величины устойчиво наблюдается в целом ряде измерений, то она может быть отнесена к систематическим и исключена из вероятностного рассмотрения. Только что изготовленная и еще не прошедшая регулировку аппаратура может иметь сколь угодно большие систематические погрешности. При подгонке и градуировке эти погрешности по возможности устраняются и далее идет процесс их по­степенного исключения, который в общем случае носит случайный ха­рактер. Процесс исключения погрешностей после момента поверки мо­жет развиваться по двум направлениям:

Как случайный процесс без прогрессивного накопления постоянной составляющей, т. е. без низкочастотных составляющих;

Как случайный процесс, когда среднее значение функции накопле­ния погрешностей во времени может иметь монотонно прогрессирую­щий характер.

Определяющим признаком при выборе метода суммирования по­грешностей является разделение их не на систематические и случайные, а по признаку их сильной или слабой взаимной корреляционной связи. На­пример, магнитоэлектрический измерительный механизм при изменении температуры имеет положительную погрешность от уменьшения жестко­сти пружин и отрицательную от уменьшения индукции магнита. При слу­чайном характере колебаний температуры обе эти составляющие по­грешности проявляются как случайные. Однако, несмотря на случайный характер их появления во времени, они жестко связаны (сильно коррелируют) между собой, так как при любых случайных колебаниях положи­тельному значению одной из них всегда сопутствует отрицательное зна­чение другой из них. Поэтому эти погрешности всегда должны вычитать­ся друг из друга.

Теория вероятностей для дисперсии суммы двух случайных величин дает следующее выражение:

; 2 +°1 "

где г - коэффициент корреляции этих величин.

Для случая сильно коррелированных случайных величин г « ±1 по­лучаем алгебраическое суммирование составляющих с учетом их знака

CTj;=CTi+О2. (1-21)

При слабой корреляционной связи или его отсутствии (г « 0) получа­ем геометрическое суммирование составляющих.

При определении суммарной погрешности устройства используют упрощенный подход к определению взаимной корреляции погрешно­стей. Если ряд погрешностей одного или нескольких преобразователей вызывается одной и той же причиной, в результате чего они оказываются достаточно сильно коррелированными, то коэффициент их взаимной кор­реляции принимается равным ± 1.

Если же погрешности вызываются причинами, не имеющими между собой явной связи, то их корреляция принимается равной нулю. Никакие промежуточные значения не используются. Исходя из этого, для сумми­рования погрешностей прежде всего надо выделить группы погрешно­стей, сильно коррелированных между собой. Вследствие жесткой взаим­ной корреляции и общей причины, вызывающей эти погрешности, они будут распределены по одному и тому же закону, а форма результирую­щего закона распределения будет соответствовать этому же закону. Поэ­тому внутри каждой из этих групп погрешности должны складываться алгебраически с учетом их знаков. Результирующие погрешности, полу­ченные после суммирования в каждой из групп, уже не имеют между со­бой жестких корреляционных связей и должны рассматриваться как ста­тистически независимые.

 


Читайте:



Отчет о прохождение практики “Научно-исследовательская работа”

Отчет о прохождение практики “Научно-исследовательская работа”

В процессе обучения в аспирантуре молодой ученый обязан пройти практику, результатом которой станет составление отчета по педагогической практике...

Благочестивая марта, или семейная жизнь доктора фрейда

Благочестивая марта, или семейная жизнь доктора фрейда

Одним из невероятных и очень талантливых людей, чьи творения до сих пор не оставляют равнодушным ни одного ученого, является Зигмунд Фрейд (годы...

Квадратичная функция Сдвиг функции по оси х

Квадратичная функция Сдвиг функции по оси х

, Конкурс «Презентация к уроку» Презентация к уроку Назад Вперёд Внимание! Предварительный просмотр слайдов используется...

Презентация "Семилетняя война" (10 класс) по истории – проект, доклад Вступление Франции в военные действия

Презентация

Слайд 1Вспомните основные направления и задачи внешней политики России в 1725-1762 гг.ТУРЦИЯ: Россия возвратила Азов; но не смогла добиться выхода...

feed-image RSS