Главная - Техника
Закон редких событий. Распределение Пуассона. Дискретные распределения в MS EXCEL Распределение пуассона и его параметры

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который называется законом Пуассона.

Рассмотрим прерывную случайную величину , которая может принимать только целые, неотрицательные значения:

причем последовательность этих значений теоретически не ограничена.

Говорят, что случайная величина распределена по закону Пуассона, если вероятность того, что она примет определенное значение , выражается формулой

где а – некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины , распределенной по закону Пуассона, имеет вид:

Убедимся, прежде всего, что последовательность вероятностей, задаваемая формулой (5.9.1), может представлять собой ряд распределения, т.е. что сумма всех вероятностей равна единице. Имеем:

.

На рис. 5.9.1 показаны многоугольники распределения случайной величины , распределенной по закону Пуассона, соответствующие различным значениям параметра . В таблице 8 приложения приведены значения для различных .

Определим основные характеристики – математическое ожидание и дисперсию – случайной величины , распределенной по закону Пуассона. По определению математического ожидания

.

Первый член суммы (соответствующий ) равен нулю, следовательно, суммирование можно начать с :

Обозначим ; тогда

. (5.9.2)

Таким образом, параметр представляет собой не что иное, как математическое ожидание случайной величины .

Для определения дисперсии найдем сначала второй начальный момент величины :

По ранее доказанному

кроме того,

Таким образом, дисперсия случайной величины, распределенной по закону Пуассона, равна её математическому ожиданию .

Это свойство распределения Пуассона часто применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики – математическое ожидание и дисперсию – случайной величины. Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против гипотезы.

Определим для случайной величины , распределенной по закону Пуассона, вероятность того, что она примет значение не меньше заданного . Обозначим эту вероятность :

Очевидно, вероятность может быть вычислена как сумма

Однако значительно проще определить её из вероятности противоположного события:

(5.9.4)

В частности, вероятность того, что величина примет положительное значение, выражается формулой

(5.9.5)

Мы уже упоминали о том, что многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис. 5.9.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

1. Вероятность попадания того или иного числа точек на отрезок зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределяются на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность (т.е. математическое ожидание числа точек, приходящихся на единицу длины) через .

2. Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или другого числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.

3. Вероятность попадания на малый участок двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины и рассмотрим дискретную случайную величину – число точек, попадающих на этот отрезок. Возможные значения величины будут

Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. ряд (5.9.6) продолжается неограниченно.

Докажем, что случайная величина имеет закон распределения Пуассона. Для этого вычислим вероятность того, что на отрезок попадет ровно точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно (т.к. на единицу длины попадает в среднем точек). Согласно условию 3 для малого отрезка можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание числа точек, попадающих на участок , будет приближенно равно вероятности попадания на него одной точки (или, что в наших условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка, при можно считать вероятность того, что на участок попадет одна (хотя бы одна) точка, равной , а вероятность того, что не попадет ни одной, равной .

Воспользуемся этим для вычисления вероятности попадания на отрезок ровно точек. Разделим отрезок на равных частей длиной . Условимся называть элементарный отрезок «пустым», если в него не попало ни одной точки, и «занятым», если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок окажется «занятым», приближенно равна ; вероятность того, что он окажется «пустым», равна . Так как, согласно условию 2, попадания точек в неперекрывающиеся отрезки независимы, то наши n отрезков можно рассмотреть как независимых «опытов», в каждом из которых отрезок может быть «занят» с вероятностью . Найдем вероятность того, что среди отрезков будет ровно «занятых». По теореме о повторении опытов эта вероятность равна

или, обозначая ,

(5.9.7)

При достаточно большом эта вероятность приближенно равна вероятности попадания на отрезок ровно точек, так как попадание двух или больше точек на отрезок имеет пренебрежимо малую вероятность. Для того чтобы найти точное значение , нужно в выражении (5.9.7) перейти к пределу при :

(5.9.8)

Преобразуем выражение, стоящее под знаком предела:

(5.9.9)

Первая дробь и знаменатель последней дроби в выражении (5.9.9) при , очевидно, стремятся к единице. Выражение от не зависит. Числитель последней дроби можно преобразовать так:

(5.9.10)

При и выражение (5.9.10) стремится к . Таким образом, доказано, что вероятность попадания ровно точек в отрезок выражается формулой

где , т.е. величина Х распределена по закону Пуассона с параметром .

Отметим, что величина по смыслу представляет собой среднее число точек, приходящееся на отрезок .

Величина (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок попадет хотя бы одна точка:

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой «областью» был отрезок на оси абсцисс. Однако наш вывод легко распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

1) точки распределены в поле статистически равномерно со средней плотностью ;

2) точки попадают в неперекрывающиеся области независимым образом;

3) точки появляются поодиночке, а не парами, тройками и т.д., то число точек , попадающих в любую область (плоскую или пространственную), распределяются по закону Пуассона:

где – среднее число точек, попадающих в область .

Для плоского случая

где – площадь области ; для пространственного

где - объем области .

Заметим, что для пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности () несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножение плотности на длину, площадь или объем области, а интегрированием переменной плотности по отрезку, площади или объему. (Подробнее об этом см. n° 19.4)

Наличие случайных точек, разбросанных на линии, на плоскости или объеме – неединственное условие, при котором возникает распределение Пуассона. Можно, например, доказать, что закон Пуассона является предельным для биномиального распределения:

, (5.9.12)

если одновременно устремлять число опытов к бесконечности, а вероятность – к нулю, причем их произведение сохраняет постоянное значение:

Действительно, это предельное свойство биномиального распределения можно записать в виде:

. (5.9.14)

Но из условия (5.9.13) следует, что

Подставляя (5.9.15) в (5.9.14), получим равенство

, (5.9.16)

которое только что было доказано нами по другому поводу.

Это предельное свойство биномиального закона часто находит применение на практике. Допустим, что производится большое количество независимых опытов , в каждом из которых событие имеет очень малую вероятность . Тогда для вычисления вероятности того, что событие появится ровно раз, можно воспользоваться приближенной формулой:

, (5.9.17)

где - параметр того закона Пуассона, которым приближенно заменяется биномиальное распределение.

От этого свойства закона Пуассона – выражать биномиальное распределение при большом числе опытов и малой вероятности события – происходит его название, часто применяемое в учебниках статистики: закон редких явлений.

Рассмотрим несколько примеров, связанных с пуассоновским распределением, из различных областей практики.

Пример 1. На автоматическую телефонную станцию поступают вызовы со средней плотностью вызовов в час. Считая, что число вызовов на любом участке времени распределено по закону Пуассона, найти вероятность того, что за две минуты на станцию поступит ровно три вызова.

Решение. Среднее число вызовов за две минуты равно:

Кв.м. Для поражения цели достаточно попадания в нее хотя бы одного осколка. Найти вероятность поражения цели при данном положении точки разрыва.

Решение. . По формуле (5.9.4) находим вероятность попадания хотя бы одного осколка:

(Для вычисления значения показательной функции пользуемся таблицей 2 приложения).

Пример 7. Средняя плотность болезнетворных микробов в одном кубическом метре воздуха равна 100. Берется на пробу 2 куб. дм воздуха. Найти вероятность того, что в нем будет обнаружен хотя бы один микроб.

Решение. Принимая гипотезу о пуассоновском распределении числа микробов в объеме, находим:

Пример 8. По некоторой цели производится 50 независимых выстрелов. Вероятность попадания в цель при одном выстреле равна 0,04. Пользуясь предельным свойством биномиального распределения (формула (5.9.17)), найти приближенно вероятность того, что в цель попадет: ни одного снаряда, один снаряд, два снаряда.

Решение. Имеем . По таблице 8 приложения находим вероятности.

9. Закон распределения Пуассона и Гаусса

Закон Пуассона. Другое название его – закон ра-определения редких событий. Закон Пуассона (З. П.) применяется в тех случаях, когда маловероятно, и поэтому применение Б/З/Р нецелесообразно.

Достоинствами закона являются: удобство при вычислении, возможность вычислить вероятность в заданном промежутке времени, возможность замены времени другой непрерывной величиной, например, линейными размерами.

Закон Пуассона имеет следующий вид:

и читается следующим образом: вероятность появления события А в m раз при n независимых испытаниях выражается формулой вида (59), где а = пр – среднее значение p(A), причем а является единственным параметром в законе Пуассона.

Закон нормального распределения (закон Гаусса). Практика неуклонно подтверждает, что закону Гаусса с достаточным приближением подчиняются законы распределения ошибок при измерениях самых различных параметров: от линейных и угловых размеров до характеристик основных механических свойств стали.

Плотность вероятности закона нормального распределения (в дальнейшем Н. Р.) имеет вид

где x 0 – среднее значение случайной величины;

? – среднее квадратическое отклонение той же случайной величины;

e = 2,1783… – основание натурального логарифма;

Ж – параметр, который удовлетворяет условию.

Причина широкого применения закона нормального распределения теоретически определяется теоремой Ляпунова.

При известных Х 0 и? ординаты кривой функции f(x) можно вычислить по формуле

где t – нормированная переменная,

(t) плотность вероятности z. Если подставить z и (t) в формулу, то следует:

Кривую З.Н.Р. часто называют кривой Гаусса, этот закон описывает очень многие явления в природе.

Из книги Творчество как точная наука [Теория решения изобретательских задач] автора Альтшуллер Генрих Саулович

6. Закон перехода в надсистему Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы. Об этом законе мы уже говорили. Перейдем к «динамике». Она включает законы, отражающие

Из книги Интерфейс: новые направления в проектировании компьютерных систем автора Раскин Джефф

Из книги Приборостроение автора Бабаев М А

4.4.1. Закон Фитса Представим, что вы перемещаете курсор к кнопке, изображенной на экране. Кнопка является целью данного перемещения. Длина прямой линии, соединяющей начальную позицию курсора и ближайшую точку целевого объекта, определяется в законе Фитса как дистанция. На

Из книги Теплотехника автора Бурханова Наталья

4.4.2. Закон Хика Перед тем как переместить курсор к цели или совершить любое другое действие из набора множества вариантов, пользователь должен выбрать этот объект или действие. В законе Хика утверждается, что когда необходимо сделать выбор из n вариантов, время на выбор

Из книги Компьютерная лингвистика для всех: Мифы. Алгоритмы. Язык автора Анисимов Анатолий Васильевич

6. Статистика распределения случайных величин Основные характеристики случайных величин.1. Меры положения.Таковыми называют (считают) точки, вокруг которых происходит колебание характеристики величин.Сумма произведений эмпирических значений случайной величены xi на

Из книги Феномен науки [Кибернетический подход к эволюции] автора Турчин Валентин Фёдорович

10. Биноминальный и полиноминальный законы распределения. Равновероятное распределение. Закон распределения эксцентриситета 1. Биноминальный закон распределения. Этот закон математически выражается формулой разложения бинома (q + p)2 в следующем виде где n! – читается

Из книги Нанотехнологии [Наука, инновации и возможности] автора Фостер Линн

11. Другие законы распределения В технической промышленности, в том числе приборостроении, применяются некоторые другие виды законов распределения, кроме вышерассмотренных. При этом распределение случайных величин идет уже по самым разнообразным их параметрам.

Из книги История электротехники автора Коллектив авторов

22. Закон Бойля-Мариотта Одним из законов идеального газа является закон Бойля-Мариотта, который гласит: произведение давления Pна объем Vгаза при неизменных массе газа и температуре постоянно. Это равенство носит название уравнения изотермы. Изотерма изображается на

Из книги История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) автора Шнейберг Ян Абрамович

23. Закон Гей-Люссака Закон Гей-Люссака гласит: отношение объема газа к его температуре при неизменных давлении газа и его массе постоянно.V/ Т = m/ MО R/ P= constпри P = const, m = const.Это равенство носит название уравнения изобары.Изобара изображается на PV-диаграмме прямой,

Из книги автора

24. Закон Шарля Закон Шарля утверждает, что отношение давления газа к его температуре постоянно, если объем и масса газа неизменны:P/ Т = m/ MО R/ V = constпри V = const, m = const.Это равенство носит название уравнения изохоры.Изохора изображается на PV-диаграмме прямой, параллельной оси P, а

Из книги автора

30. Закон сохранения и превращения энергии Первый закон термодинамики основан на всеобщем законе сохранения и превращения энергии, который устанавливает, что энергия не создается и не исчезает.Тела, участвующие в термодинамическом процессе, взаимодействуют друг с

Из книги автора

ЦАРЕВНА-ЛЯГУШКА И ЗАКОН УСТОЙЧИВОСТИ Как уже подчеркивалось ранее (закон абстракции), первобытное мышление умело анализировать конкретные явления и синтезировать новые абстрактные системы. Так как любой сконструированный сознанием объект воспринимался живым, а живое

Из книги автора

1.1. Основной закон эволюции В процессе эволюции жизни, насколько нам известно, всегда происходило и происходит сейчас увеличение общей массы живого вещества и усложнение его организации. Усложняя организацию биологических образований, природа действует по методу проб и

Из книги автора

4.2. Закон Мура В своей самой простой формулировке закон Мура сводится к утверждению, что плотность монтажа транзисторных схем возрастает вдвое за каждые 18 месяцев. Авторство закона приписывают одному из основателей известной фирмы Intel Гордону Муру. Строго говоря, в

Введение

Подчиняются ли каким-либо законам явления, носящие случайный характер? Да, но эти законы отличаются от привычных нам физических законов. Значения СВ невозможно предугадать даже при известных условиях эксперимента, мы можем лишь указать вероятности того, что СВ примет то или иное значение. Зато зная распределение вероятностей СВ, мы можем делать выводы о событиях, в которых участвуют эти случайные величины. Правда, эти выводы будут также носить вероятностный характер.

Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные значения Xi. В этом случае ряд значений вероятностей P(Xi) для всех (i=1…n) допустимых значений этой величины называют её законом распределения.

Закон распределения СВ - это отношение, устанавливающее связь между возможными значениями СВ и вероятностями, с которыми принимаются эти значения. Закон распределения полностью характеризует СВ.

При построении математической модели для проверки статистической гипотезы необходимо ввести математическое предположение о законе распределения СВ (параметрический путь построения модели).

Непараметрический подход к описанию математической модели (СВ не имеет параметрического закона распределения) менее точен, но имеет более широкую область применения.

Точно также, как и для вероятности случайного события, для закона распределения СВ есть только два пути его отыскания. Либо мы строим схему случайного события и находим аналитическое выражение (формулу) вычисления вероятности (возможно, кто–то уже сделал или сделает это за нас!), либо придется использовать эксперимент и по частотам наблюдений делать какие–то предположения (выдвигать гипотезы) о законе распределения.

Конечно же, для каждого из "классических" распределений уже давно эта работа проделана – широко известными и очень часто используемыми в прикладной статистике являются биномиальное и полиномиальное распределения, геометрическое и гипергеометрическое, распределение Паскаля и Пуассона и многие другие.

Для почти всех классических распределений немедленно строились и публиковались специальные статистические таблицы, уточняемые по мере увеличения точности расчетов. Без использования многих томов этих таблиц, без обучения правилам пользования ими последние два столетия практическое использование статистики было невозможно.

Сегодня положение изменилось – нет нужды хранить данные расчетов по формулам (как бы последние не были сложны!), время на использование закона распределения для практики сведено к минутам, а то и секундам. Уже сейчас существует достаточное количество разнообразных пакетов прикладных компьютерных программ для этих целей.

Среди всех вероятностных распределений есть такие, которые используются на практике особенно часто. Эти распределения детально изучены и свойства их хорошо известны. Многие из этих распределений лежат в основе целых областей знаний – таких, как теория массового обслуживания, теория надежности, контроль качества, теория игр и т.п

Среди них нельзя не обратить внимание на труды Пуассона (1781-1840), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.

Именно этому закону распределения и посвящена данная курсовая работа. Речь пойдет непосредственно о законе, о его математических характеристиках, особых свойствах, связи с биномиальным распределением. Несколько слов будет сказано по поводу практического применения и приведено несколько примеров из практики.

Цель нашего реферата – выяснить сущность теорем распределения Бернулли и Пуассона.

Задача – изучить и проанализировать литературу по теме реферата.

1. Биномиальное распределение (распределение Бернулли)

Биномиальное распределение (распределение Бернулли) - распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна p (0

Говорят, что СВ Х распределена по закону Бернулли с параметром p, если она принимает значения 0 и 1 с вероятностями pX(x)ºP{X=x} = pxq1-x; p+q=1; x=0,1.

Биноминальное распределение возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.

Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и (1– p) = q – вероятность того, что вошедший в магазин посетитель не окажется покупателем.

Если X – число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна

P(X= k) = , где k=0,1,…n 1)

Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.

Испытание Бернулли – это вероятностный эксперимент с двумя исходами, которые, как правило, называют «успехом» (его принято обозначать символом 1) и «неудачей» (соответственно, обозначается 0). Вероятность успеха принято обозначать буквой p, неудачи – буквой q; конечно, q=1-p. Величину p называют параметром испытания Бернулли.

Биномиальная, геометрическая, паскалева и отрицательная биномиальная случайные величины получаются из последовательности независимых испытаний Бернулли, если эту последовательность оборвать тем или иным способом, например, после n-го испытания или x-го успеха. Принято использовать следующую терминологию:

– параметр испытания Бернулли (вероятность успеха в отдельном испытании);

– число испытаний;

– число успехов;

– число неудач.

Биномиальная случайная величина (m|n,p) – число m успехов в n испытаниях.

Геометрическая случайная величина G(m|p)– число m испытаний до первого успеха (включая первый успех).

Паскалева случайная величина C(m|x,p)– число m испытаний до x-го успеха (не включая, конечно, сам x-й успех).

Отрицательная биномиальная случайная величина Y(m|x,p) – число m неудач до x-го успеха (не включая x-й успех).

Замечание: иногда отрицательное биномиальное распределение называют паскалевым и наоборот.


Распределение Пуассона

2.1. Определение закона Пуассона

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который носит название закона Пуассона.

Рассмотрим прерывную случайную величину Х, которая может принимать только целые, неотрицательные значения: 0, 1, 2, … , m, … ; причем последовательность этих значений теоретически не ограничена. Говорят, что случайная величина Х распределена по закону Пуассона, если вероятность того, что она примет определенное значение m, выражается формулой:

где а - некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины Х, распределенной по закону Пуассона, выглядит следующим образом:

хm m
Pm e-a

2.2.Основные характеристики распределения Пуассона

Для начала убедимся, что последовательность вероятностей, может представлять собой ряд распределения, т.е. что сумма всех вероятностей Рm равна единице.

Используем разложение функции ех в ряд Маклорена:

Известно, что этот ряд сходится при любом значении х, поэтому, взяв х=а, получим

следовательно

Определим основные характеристики - математическое ожидание и дисперсию - случайной величины Х, распределенной по закону Пуассона. Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности. По определению, когда дискретная случайная величина принимает счетное множество значений:

Первый член суммы (соответствующий m=0) равен нулю, следовательно, суммирование можно начинать с m=1:

Таким образом, параметр а представляет собой не что иное, как математическое ожидание случайной величины Х.

Дисперсией случайной величины Х называют математической ожидание квадрата отклонения случайной величины от ее математического ожидания:

Однако, удобнее ее вычислять по формуле:

Поэтому найдем сначала второй начальный момент величины Х:

По ранее доказанному

кроме того,

2.3.Дополнительные характеристики распределения Пуассона

I. Начальным моментом порядка k случайной величины Х называют математическое ожидание величины Хk:

В частности, начальный момент первого порядка равен математическому ожиданию:

II. Центральным моментом порядка k случайной величины Х называют математическое ожидание величины k:

В частности, центральный момент 1-ого порядка равен 0:

μ1=М=0,

центральный момент 2-ого порядка равен дисперсии:

μ2=M2=a.

III. Для случайной величины Х, распределенной по закону Пуассона, найдем вероятность того, что она примет значение не меньшее заданного k. Эту вероятность обозначим Rk:

Очевидно, вероятность Rk может быть вычислена как сумма

Однако, значительно проще определить ее из вероятности противоположного события:

В частности, вероятность того, что величина Х примет положительное значение, выражается формулой

Как уже говорилось, многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Рис.2

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

1) Вероятность попадания того или иного числа точек на отрезок l зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределены на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность, т.е. математическое ожидание числа точек, приходящихся на единицу длины, через λ.

2) Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или иного числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.

3) Вероятность попадания на малый участок Δх двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины l и рассмотрим дискретную случайную величину Х - число точек, попадающих на этот отрезок. Возможные значения величины будут 0,1,2,…,m,… Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. данный ряд продолжается неограниченно.

Докажем, что случайная величина Х распределена по закону Пуассона. Для этого надо подсчитать вероятность Рm того, что на отрезок попадет ровно m точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок Δх и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно λ·Δх (т.к. на единицу длины попадает в среднем λ точек). Согласно условию 3 для малого отрезка Δх можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание λ·Δх числа точек, попадающих на участок Δх, будет приближенно равно вероятности попадания на него одной точки (или, что в данных условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка, при Δх→0 можно считать вероятность того, что на участок Δх попадет одна (хотя бы одна) точка, равной λ·Δх, а вероятность того, что не попадет ни одной, равной 1-c·Δх.

Воспользуемся этим для вычисления вероятности Pm попадания на отрезок l ровно m точек. Разделим отрезок l на n равных частей длиной Условимся называть элементарный отрезок Δх "пустым", если в него не попало ни одной точки, и "занятым", если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок Δх окажется "занятым", приближенно равна λ·Δх= ; вероятность того, что он окажется "пустым", равна 1- . Так как, согласно условию 2, попадания точек в неперекрывающиеся отрезки независимы, то наши n отрезков можно рассмотреть как n независимых "опытов", в каждом из которых отрезок может быть "занят" с вероятностью p= . Найдем вероятность того, что среди n отрезков будет ровно m "занятых". По теореме о повторных независимых испытаниях эта вероятность равна

,

или обозначим λl=a:

.

При достаточно большом n эта вероятность приближенно равна вероятности попадания на отрезок l ровно m точек, т.к. попадание двух или больше точек на отрезок Δх имеет пренебрежимо малую вероятность. Для того, чтобы найти точное значение Рm, нужно перейти к пределу при n→∞:

Учитывая, что

,

получаем, что искомая вероятность выражается формулой

где а=λl, т.е. величина Х распределена по закону Пуассона с параметром а=λl.

Надо отметить, что величина а по смыслу представляет собой среднее число точек, приходящееся на отрезок l. Величина R1 (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок l попадет хотя бы одна точка: R1=1-e-a.

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой областью был отрезок l на оси абсцисс. Однако этот вывод легко можно распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

1) точки распределены в поле статистически равномерно со средней плотностью λ;

2) точки попадают в неперекрывающиеся области независимым образом;

3) точки появляются поодиночке, а не парами, тройками и т.д.,

то число точек Х, попавших в любую область D (плоскую или пространственную), распределяется по закону Пуассона:

,

где а - среднее число точек, попадающих в область D.

Для плоского случая а=SD λ, где SD - площадь области D,

для пространственного а= VD λ, где VD - объем области D.

Для пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности (λ=const) несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножением плотности λ на длину, площадь или объем, а интегрированием переменной плотности по отрезку, площади или объему.

Распределение Пуассона играет важную роль в ряде вопросов физики, теории связи, теории надежности, теории массового обслуживания и т.д. Всюду, где в течение определенного времени может происходить случайное число каких-то событий (радиоактивных распадов, телефонных вызовов, отказов оборудования, несчастный случаях и т.п.).

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть некоторые события (покупки в магазине) могут происходить в случайные моменты времени. Определим число появлений таких событий в промежутке времени от 0 до Т.

Случайное число событий, происшедших за время от 0 до Т, распределено по закону Пуассона с параметром l=аТ, где а>0 – параметр задачи, отражающий среднюю частоту событий. Вероятность k покупок в течение большого интервала времени, (например, – дня) составит


Заключение

В заключение хочется отметить то, что распределение Пуассона является достаточно распространенным и важным распределением, имеющим применение как в теории вероятностей и ее приложениях, так и в математической статистике.

Многие задачи практики сводятся в конечном счете к распределению Пуассона. Его особое свойство, заключающееся в равенстве математического ожидания и дисперсии, часто применяют на практике для решения вопроса, распределена случайная величина по закону Пуассона или нет.

Также важен тот факт, что закон Пуассона позволяет находить вероятности события в повторных независимых испытаниях при большом количестве повторов опыта и малой единичной вероятности.

Однако распределение Бернулли применяется в практике экономических расчетов и в частности при анализе устойчивости исключительно редко. Это связано как с вычислительными сложностями, так и с тем, что распределение Бернулли – для дискретных величин, и с тем, что условия классической схемы (независимость, счетное число испытаний, неизменность условий, влияющих на возможность наступления события) не всегда выполняются в практических ситуациях. Дальнейшие исследования в области анализа схемы Бернулли, проводимые в XVIII-XIX вв. Лапласом, Муавром, Пуассоном и другими были направлены на создание возможности использования схемы Бернулли в случае большого, стремящегося к бесконечности количества испытаний.


Литература

1. Вентцель Е.С. Теория вероятностей. - М, "Высшая школа" 1998

2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. - М, "Высшая школа" 1998

3. Сборник задач по математике для втузов. Под ред. Ефимова А.В. - М, Наука 1990

Дискретная случайная величина распределена по закону Пуассона, если она принимает значения 0,1,2…m n …, бесконечное, но счетное число раз, с вероятностями, определяемыми по формуле Пуассона:

где,p .

Закон распределения примет вид:

,

и т.д.

Теорема. Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, равны параметру Пуассона.

Пример 1.

Станок изготавливает за смену 100000 деталей. Вероятность изготовления бракованной детали p = 0,0001.

Найти вероятность того, что за смену будет изготовлено 5 бракованных деталей.

Решение:

Обозначим n = 100 000, k = 5, p = 0,0001. События, состоящие в том, что отдельная деталь бракована, независимы, число испытаний n велико, а вероятность p мала, поэтому воспользуемся распределением Пуассона:

Пример 2.

Устройство состоит из 1000 элементов. Вероятность отказа любого элемента в течение времени t равна 0,002.

Найти математическое ожидание, дисперсию, среднее квадратическое отклонениеи моду.

Решение:

X ‒ случайная величина ‒ число отказавших за время t элементов.

Следовательно, случайная величина распределена по закону Пуассона.

элемента

Составим закон распределения Пуассона:

и т.д.

9. Непрерывная случайная величина. Функция распределения. Плотность вероятности. Вероятность попадания в заданный интервал.

Непрерывной случайной величиной называют случайную величину, значения которой сплошь заполняют некоторый интервал.

Например, рост человека ‒ непрерывная случайная величина.

Функцией распределения случайной величины называют вероятность того, что случайная величина Х принимает значения, меньшие х .

F (x ) = P (X

Геометрически, формула F (x ) = P (X означает, что все значения Х будут находиться, левее х . Функция F (x ) называется интегральной функцией.

Плотностью вероятности непрерывной случайной величины f (x ) называется производная от функции распределения этой случайной величины:

Следовательно, F (x ) первообразная для f (x ).

Теорема. Вероятность попадания непрерывной случайной величины X в интервал от a до b находится по формуле:

Доказательство.

Следствие. Если все возможные значения случайной величины

10. Математическое ожидание и дисперсия непрерывной случайной величины

1. Математическое ожидание:

2. Дисперсия:

Преобразуем эту формулу:

‒ формула дисперсии для непрерывных случайных величин.

Тогда среднее квадратическое отклонение:

11. Основные законы распределения непрерывных случайных величин.

1.Нормальный закон распределения.

Из всех законов распределения для непрерывных случайных величин на практике чаще всего встречается нормальный закон распределения. Этот закон распределения является предельным, то есть все остальные распределения стремятся к нормальному.

Теорема 1. Непрерывная случайная величина распределена по нормальному закону с параметрами а и ,если плотность вероятности имеет вид:

Математическое ожидание случайной величины, распределённой по нормальному закону распределения, равно а , то естьдисперсия.

Теорема 2. Вероятность попадания непрерывной случайной величины, распределенной по нормальному закону распределения в интервал от α до β , находится по формуле:

Пример.

Полагая, что рост мужчин определенной возрастной группы есть нормально распределенная случайная величина X, c параметрами а = 173 и = 36.

Найти: а) выражение плотности вероятностей и функции распределения случайной величины X ;

б) долю костюмов 4-го роста (176 – 182 см) в общем объеме производства.

Решение:

Плотность вероятности нормально распределенной случайной величины:

Доля костюмов 4-го роста (176 – 182 см.) в общем объеме производства определяется по формуле как вероятность

0,2417100%24,2% ‒ доля костюмов 4-го роста в общем объеме производства.

Итак, функция плотности вероятностей нормального закона распределения имеет вид:

Тогда функция распределения:

 


Читайте:



Отчет о прохождение практики “Научно-исследовательская работа”

Отчет о прохождение практики “Научно-исследовательская работа”

В процессе обучения в аспирантуре молодой ученый обязан пройти практику, результатом которой станет составление отчета по педагогической практике...

Благочестивая марта, или семейная жизнь доктора фрейда

Благочестивая марта, или семейная жизнь доктора фрейда

Одним из невероятных и очень талантливых людей, чьи творения до сих пор не оставляют равнодушным ни одного ученого, является Зигмунд Фрейд (годы...

Квадратичная функция Сдвиг функции по оси х

Квадратичная функция Сдвиг функции по оси х

, Конкурс «Презентация к уроку» Презентация к уроку Назад Вперёд Внимание! Предварительный просмотр слайдов используется...

Презентация "Семилетняя война" (10 класс) по истории – проект, доклад Вступление Франции в военные действия

Презентация

Слайд 1Вспомните основные направления и задачи внешней политики России в 1725-1762 гг.ТУРЦИЯ: Россия возвратила Азов; но не смогла добиться выхода...

feed-image RSS