Главная - История
Знакопеременные ряды. Числовые ряды: определения, свойства, признаки сходимости, примеры, решения Новые признаки сходимости числовых рядов

Определение числового ряда и его сходимости.

Необходимый признак сходимости

Пусть – бесконечная последовательность чисел.

Определение. Выражение

, (1)

или, что то же самое, , называется числовым рядом , а числа https://pandia.ru/text/79/302/images/image005_146.gif" width="53" height="31">членами ряда. Член с произвольным номером называется n -м, или общим членом ряда .

Само по себе выражение (1) никакого определенного числового смысла не имеет, потому что, вычисляя сумму, мы каждый раз имеем дело лишь с конечным числом слагаемых. Определить смысл этого выражения наиболее естественно следующим образом.

Пусть дан ряд (1).

Определение. Сумма n первых членов ряда

называется n -й частичной суммой ряда. Образуем последовательность частичных сумм:

font-size:14.0pt">С неограниченным увеличением числа n в сумме учитывается все большее число членов ряда. Поэтому разумно дать такое определение.

Определение. Если при существует конечный предел последовательности частичных сумм https://pandia.ru/text/79/302/images/image011_76.gif" width="103" height="41"> называется его суммой .

Если последовательность https://pandia.ru/text/79/302/images/image013_77.gif" width="80" height="31">, 2) если колеблющаяся. В обоих случаях говорят, что ряд суммы не имеет.

Пример 1. Рассмотрим ряд, составленный из членов геометрической прогрессии:

, (2)

где – называется первым членом прогрессии, а font-size:14.0pt"> Частичная сумма этого ряда при font-size:14.0pt">font-size:14.0pt">Отсюда:

1) если , то

font-size:14.0pt">т. е. ряд геометрической прогрессии сходится и его сумма .

В частности, если , ряд сходится и его сумма .

При https://pandia.ru/text/79/302/images/image026_42.gif" width="307" height="59 src="> также сходится и его сумма .

2) если , то , т. е. ряд (2) расходится.

3) если , то ряд (2) принимает вид font-size:14.0pt"> и , т. е. ряд расходится (при font-size:18.0pt">) .


4) если https://pandia.ru/text/79/302/images/image036_32.gif" width="265" height="37"> . Для этого ряда

https://pandia.ru/text/79/302/images/image038_28.gif" width="253" height="31 src=">,

т. е..gif" width="67" height="41"> не существует, следовательно, ряд также расходится (при ) .

Вычисление суммы ряда непосредственно по определению очень неудобно из-за трудности явного вычисления частичных сумм font-size:14.0pt"> и нахождения предела их последовательности. Но, если установлено, что ряд сходится, его сумму можно вычислить приближенно, т. к. из определения предела последовательности следует, что при достаточно больших . Поэтому при исследовании рядов достаточно

1) знать приемы, позволяющие констатировать сходимость ряда без нахождения его суммы;

2) уметь определить font-size:14.0pt">.gif" width="16 height=24" height="24"> с определенной точностью.

Сходимость числовых рядов устанавливается с помощью теорем, которые называются признаками сходимости.

Необходимый признак сходимости

Если ряд сходится, то его общий член стремится к нулю, т. е. font-size:14.0pt">.gif" width="61 height=63" height="63"> расходится.

Пример 2. Доказать, что ряд 0 " style="border-collapse:collapse">

Решение.

А) https://pandia.ru/text/79/302/images/image051_28.gif" width="176" height="81 src="> расходится.

и поэтому ряд расходится. При решении использовался второй замечательный

предел: (подробнее см. ).

В) font-size:14.0pt">, т. е. последовательность

– бесконечно

малая. Так как при font-size:14.0pt">~ (см. ), то ~ .

Учитывая это, получим:

значит, ряд расходится.

Г) font-size:14.0pt">,

следовательно, ряд расходится.

Условие является необходимым, но не достаточным условием сходимости ряда: существует множество рядов, для которых , но которые тем не менее расходятся.

Пример 3. Исследовать сходимость ряда font-size:14.0pt"> Решение. Заметим, что https://pandia.ru/text/79/302/images/image066_20.gif" width="119" height="59 src=">, т. е. необходимое условие сходимости выполнено. Частичная сумма

left">

– раз

поэтому font-size:14.0pt">, а это значит, что ряд расходится по определению.

Достаточные признаки сходимости знакоположительных рядов

Пусть . Тогда ряд font-size:14.0pt"> Признак сравнения

Пусть и – знакоположительные ряды. Если для всех выполняется неравенство , то из сходимости ряда следует сходимость ряда , а из расходимости ряда https://pandia.ru/text/79/302/images/image074_19.gif" width="55" height="60">.

Этот признак остается в силе, если неравенство https://pandia.ru/text/79/302/images/image072_18.gif" width="60" height="24">, а лишь начиная с некоторого номера . Его можно проинтерпретировать следующим образом: если больший ряд сходится, то меньший тем более сходится; если расходится меньший ряд, то больший также расходится.

Пример 4. Исследовать сходимость ряда 0 " style="margin-left:50.4pt;border-collapse:collapse">

Решение.

А) Заметим, что font-size:14.0pt"> для всех . Ряд с общим членом

сходится, т. к. является рядом геометрической прогрессии со знаменателем (см. пример 1), поэтому данный ряд сходится по признаку сравнения.

Б) Сравним ряд с рядом ..gif" width="91" height="29 src=">.gif" width="87" height="59"> расходится, значит, данный ряд также расходится.

Несмотря на простоту формулировки признака сравнения, на практике более удобна следующая теорема, являющаяся его следствием.

Предельный признак сравнения

Пусть https://pandia.ru/text/79/302/images/image071_17.gif" width="53" height="60 src="> – знакоположительные ряды. Если существует конечный и не равный нулю предел , то оба ряда и

одновременно сходятся или одновременно расходятся.

В качестве ряда, используемого для сравнения с данным, часто выбирают ряд вида . Такой ряд называется рядом Дирихле . В примерах 3 и 4 было показано, что ряд Дирихле с и расходится. Можно пока-


зать, что ряд font-size:14.0pt"> .

Если , то ряд называется гармоническим . Гармонический ряд расходится.

Пример 5. Исследовать на сходимость ряд с помощью предельного признака сравнения, если

Числовые ряды. Сходимость и расходимость числовых рядов. Признак сходимости Даламбера. Знакопеременные ряды. Абсолютная и условная сходимость рядов. Функциональные ряды. Степенные ряды. Разложение элементарных функций в ряд Маклорена .

Методические указания по теме 1.4:

Числовые ряды:

Числовым рядом называется сумма вида

где числа u 1 , u 2 , u 3 , n n , называемые членами ряда, образуют бесконечную последовательность; член un называется общим членом ряда.

. . . . . . . . .

составленные из первых членов ряда (27.1), называются частными суммами этого ряда.

Каждому ряду можно сопоставить последовательность частичных сумм S 1 , S 2 , S 3 . Если при бесконечном возрастании номера n частичная сумма ряда S n стремится к пределу S , то ряд называется сходящимся, а число S - суммой сходящегося ряда, т.е.

Эта запись равносильна записи

Если частичная сумма S n ряда (27.1) при неограниченном возрастании n не имеет конченого предела (в частности, стремится к + ¥ или к - ¥), то такой ряд называется расходящимся

Если ряд сходится, то значение S n при достаточно большом n является приближенным выражением суммы ряда S .

Разность r n = S - S n называется остатком ряда. Если ряд сходится, то его остаток стремится к нулю, т.е. r n = 0, и наоборот, если остаток стремится к нулю, то ряд сходится.

Ряд вида называется геометрическим рядом.

называется гармоническим.

если N ®¥, то S n ®¥, т.е. гармонический ряд расходится.

Пример 1. Записать ряд по его заданному общему члену:

1) полагая n = 1, n = 2, n = 3, имеем бесконечную последовательность чисел: , , , Сложив ее члены, получим ряд

2) Поступая так же, получим ряд

3) Придавая n значения 1, 2, 3, и учитывая,что 1! = 1, 2! = 1 × 2, 3! = 1 × 2 × 3, получим ряд

Пример 2. Найти n -й член ряда по его данным первым числам:

1) ; 2) ; 3) .

Пример 3. Найти сумму членов ряда:

1) Находим частичные суммы членов ряда:

Запишем последовательность частичных сумм: …, , … .

Общий член этой последовательности есть . Следовательно,

Последовательность частичных сумм имеет предел, равный . Итак, ряд сходится и его сумма равна .

2) Это бесконечно убывающая геометрическая прогрессия, в которой a 1 = , q= . Используя формулу получим Значит, ряд сходится и его сумма равна 1.

Сходимость и расходимость числовых рядов. Признак сходимости Даламбера :

Необходимый признак сходимости ряда. Ряд может сходиться только при условии, что его общий член u n при неограниченном увеличении номера n стремится к нулю:

Если , то ряд расходится - это достаточный признак растворимости ряда.


Достаточные признаки сходимости ряда с положительными членами.

Признак сравнения рядов с положительными членами. Исследуемый ряд сходится, если его члены не превосходят соответствующих членов другого, заведомо сходящегося ряда; исследуемый ряд расходится, если его члены превосходят соответствующие члены другого заведомо расходящегося ряда.

При исследовании рядов на сходимость и растворимость по этому признаку часто используется геометрический ряд

который сходится при |q|

являющийся расходящимся.

При исследовании рядов используется также обобщенный гармонический ряд

Если p = 1, то данный ряд обращается в гармонический ряд, который является расходящимся.

Если p < 1, то члены данного ряда больше соответствующих членов гармонического ряда и, значит, он расходится. При p > 1 имеем геометрический ряд, в котором |q | < 1; он является сходящимся. Итак, обобщенный гармонический ряд сходится при p > 1 и расходится при p £1.

Признак Даламбера . Если для ряда с положительными членами

(u n >0)

выполняется условие , то ряд сходится при l l > 1.

Признак Даламбера не дает ответа, если l = 1. В этом случае для исследования ряда применяются другие приемы.

Знакопеременные ряды.

Абсолютная и условная сходимость рядов:

Числовой ряд

u 1 + u 2 + u 3 + u n

называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные числа.

Числовой ряд называется знакочередующимся, если любые два стоящие рядом члена имеют противоположные знаки. Этот ряд является частным случаем знакопеременного ряда.

Признак сходимости для знакочередующихся рядов . Если члены знакочередующегося ряда монотонно убывают по абсолютной величине и общий член u n стремится к нулю при n ® ,то ряд сходится.

Ряд называется абсолютно сходящимся, если ряд также сходится. Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно. Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится. Пример 4. Исследовать на сходимость ряд .
Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем поскольку . Следовательно, данный ряд сходится. Пример 5. Исследовать на сходимость ряд .
Попробуем применить признак Лейбница: Видно, что модуль общего члена не стремится к нулю при n → ∞ . Поэтому данный ряд расходится. Пример 6. Определить, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся.
Применяя признак Даламбера к ряду, составленному из модулей соответствующих членов, находим Следовательно, данный ряд сходится абсолютно.

Пример 7. Исследовать на сходимость (абсолютную или условную) знакочередующийся ряд:

1) Члены данного ряда по абсолютной величине монотонно убывают и . Следовательно, согласно признаку Лейбница, ряд сходится. Выясним, сходятся ли этот ряд абсолютно или условно.

2) Члены данного ряда по абсолютной величине монотонно убывают: , но

Функциональные ряды:

Обычный числовой ряд состоит из чисел:

Все члены ряда - это числа.

Функциональный же ряд состоит из функций:

В общий член ряда помимо многочленов, факториалов и т.д. непременно входит буква «икс». Выглядит это, например, так: . Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

Как видите, все члены функционального ряда - это функции .

Наиболее популярной разновидностью функционального ряда является степенной ряд .

Степенные ряды:

Степенным рядом называется ряд вида

где числа а 0 , а 1 , а 2 , а n называется коэффициентами ряда, а член a n x n - общим членом ряда.

Областью сходимости степенного ряда называется множество всех значений x , при которых данный ряд сходится.

Число R называется радиусом сходимости ряда, если при |x| ряд сходится.

Пример 8. Дан ряд

Исследовать его сходимость в точках x = 1 и х = 3, x = -2.

При х = 1 данный ряд превращается в числовой ряд

Исследуем сходимость этого ряда по признаку Даламбера. Имеем

Т.е. ряд сходится.

При х = 3 получим ряд

Который расходится, так как не выполняется необходимый признак сходимости ряда

При х = -2 получим

Это знакочередующийся ряд, который, согласно признаку Лейбница, сходится.

Итак, в точках x = 1 и х = -2. ряд сходится, а в точке x = 3 расходится.

Разложение элементарных функций в ряд Маклорена:

Рядом Тейлора для функции f(x) называется степенной ряд вида

Если, а = 0, то получим частный случай ряда Тейлора

который называется рядом Маклорена.

Степенной ряд внутри его промежутка сходимости можно почленно дифференцировать и интегрировать сколько угодно раз, причем полученные ряды имеют тот же промежуток сходимости, что исходный ряд.

Два степенных ряда можно почленно складывать и умножать по правилам сложения и умножения многочленов. При этом промежуток сходимости полученного нового ряда совпадают с общей частью промежутков сходимости исходных рядов.

Для разложения функции в ряд Маклорена необходимо:

1) вычислить значения функции и ее последовательных производных в точке x = 0, т.е. , , .

8. Разложить в ряд Маклорена функции.

Определение 1.1. Числовым рядом с общим членом называют последовательность чисел соединенных знаком сложения, т. е. выражение вида:

Такой ряд записывают также в виде

Пример 1.1. Если то ряд имеет вид:

Иногда при записи ряда выписывают только несколько его первых членов. Это делают лишь тогда, когда закономерность, характерная для членов ряда, легко усматривается. Строго говоря, такой способ задания ряда не является математически корректным, так как получение формулы общего члена по нескольким первым членам ряда - задача, не имеющая однозначного решения.

Пример 1.2. Напишем одну из возможных формул для общего члена ряда, зная его первые 4 члена:

Решение. Рассмотрим сначала последовательность числителей 2, 5, 8, 11. Они образуют арифметическую прогрессию, первый член которой равен 2, а разность равна 3. Это позволяет в качестве общего выражения для числителя взять формулу общего члена арифметической прогрессии: Знаменатели 2, 6, 18, 54 образуют геометрическую прогрессию с

первым членом 2 и знаменателем 3. В качестве их общего выражения можно взять формулу общего члена геометрической прогрессии Итак, общий член ряда будет иметь следующий вид:

Следует отметить, что в качестве общего члена можно было бы принять и более сложное выражение

Контрольная работа для заочного отделения

Данко, П. Е. Высшая математика в упражнениях и задачах: в 2 ч. / П.Е. Данко, А. Г. Попов, Т. Я. Кожевникова. - 5-е изд., испр. - М.: Высшая школа.Ч.1.-1998.-304с.

Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа. -12-е издание. – СПб.: Лань, 2005.- 736 с

Б.М. Владимирский, А.Б. Горстко, Я.М. Ерусалимский. Математика: общий курс. – СПб.: Изд-во «Лань», 2002. – 954 с.

Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. - 5-е изд., стереотип. - М.: Наука, 1978. - 632с.

Демидович Б.П. Краткий курс высшей матетматики: Учебное пособие для вузов - M.: OOO «Издательство Астрель»: OOO «Издательство АСТ», 2001. - 656с.

Пискунов Н.С. Дифференциальные и интегральные исчисления: Учеб. для втузов. В 2-ч т. Т.II: - М.: Интеграл–Пресс, 2004. -544 с.

Введение.

Выполнять контрольную работу следует строго по графику. Каждый студент выполняет контрольную работу под вариантом, номер которого совпадает с его порядковым номером в групповом журнале. Решение задач нужно предоставить в письменном виде на отдельных листах (формата А 4, в скрепленном виде). Сдавать работу можно как в печатном, так и в письменном виде. Выполняя к.р. , студент должен переписать условие соответствующей задачи, написать подробное решение, выделив ответ. Там, где это необходимо, дать краткие пояснения по ходу решения.

«ЧИСЛОВЫЕ и ФУНКЦИОНАЛЬНЫЕ РЯДЫ»

Числовые ряды. Достаточные признаки их сходимости

Пусть u 1 , u 2 , u 3 , … , u n , …, где u n = f (n ), –– бесконечная числовая последовательность. Выражение u 1 + u 2 + u 3 + … + u n + … называется бесконечным числовым рядом , а числа u 1 , u 2 , u 3 , … , u n , … –– членами ряда; u n = f (n ) называется общим членом . Ряд часто записывают в виде .

Сумму первых n членов числового ряда обозначают через S n и называют n частичной суммой ряда :

Ряд называется сходящимся , если его n -я частичная сумма S n при неограниченном возрастании n стремится к конечному пределу, т.е. если . Число S называют суммой ряда . Если же n -я частичная сумма ряда при не стремится к конечному пределу, то ряд называют расходящимся .

Ряд , составленный из членов любой убывающей геометрической прогрессии, является сходящимся и имеет сумму .

Ряд , называемый гармоническим , расходится.

Необходимый признак сходимости. Если ряд сходится, то , т.е. при предел общего члена сходящегося ряда равен нулю.

Таким образом, если , то ряд расходится.

Перечислим важнейшие признаки сходимости и расходимости рядов с положительными членами.


Первый признак сравнения. Пусть даны два ряда

причем каждый член ряда (1) не превосходит соответствующего члена ряда (2), т.е. . Тогда если сходится ряд (2), то сходится и ряд (1); если расходится ряд (1), то расходится и ряд (2).

Этот признак остается в силе, если неравенства выполняются не при всех n , а лишь начиная с некоторого номера n = N .

Второй признак сравнения. Если существует конечный отличный от нуля предел , то ряды и одновременно сходятся или расходятся.

Радикальный признак Коши. Если для ряда

существует , то этот ряд сходится при , расходится при .

Признак Даламбера. Если для ряда существует , то этот ряд сходится при , расходится при .

Интегральный признак Коши. Если f (x ) при –– непрерывная положительная и монотонно убывающая функция, то ряд , где сходится или расходится в зависимости от того, сходится или расходится интеграл .

Рассмотрим теперь ряды, члены которых имеют чередующиеся знаки, т.е. ряды вида , где .

Признак сходимости знакочередующегося ряда (признак Лейбница). Знакочередующийся ряд сходится, если абсолютные величины его членов монотонно убывают, а общий член стремится к нулю. То есть, если выполняются следующие два условия: 1) и 2) .

Возьмем n -ю частичную сумму сходящегося знакочередующегося ряда, для которого выполняется признак Лейбница:

Пусть –– n -й остаток ряда. Его можно записать как разность между суммой ряда S и n -й частичной суммой S n , т.е. . Нетрудно видеть, что

Величина оценивается с помощью неравенства .

Остановимся теперь на некоторых свойствах знакопеременных рядов (т.е. знакочередующихся рядов и рядов с произвольным чередованием знаков своих членов).

Знакопеременный ряд сходится, если сходится ряд .

В этом случае исходный ряд называется абсолютно сходящимся .

Сходящийся ряд называется условно сходящимся , если ряд расходится.

Пример 1. Исследовать сходимость ряда

Решение. Данный ряд составлен из членов бесконечно убывающей геометрической прогрессии и поэтому сходится. Найдем его сумму. Здесь , (знаменатель прогрессии). Следовательно,

Пример 2. Исследовать сходимость ряда .

Решение. Данный ряд получен из гармонического отбрасыванием первых десяти членов. Следовательно, он расходится.

Пример 3. Исследовать сходимость ряда . , –– ряд сходится.

Ряды для чайников. Примеры решений

Всех выживших приветствую на втором курсе! На этом уроке, а точнее, на серии уроков, мы научимся управляться с рядами. Тема не очень сложная, но для ее освоения потребуются знания с первого курса, в частности, необходимо понимать, что такое предел , и уметь находить простейшие пределы. Впрочем, ничего страшного, по ходу объяснений я буду давать соответствующие ссылки на нужные уроки. Некоторым читателям тема математических рядов, приемы решения, признаки, теоремы могут показаться своеобразными, и даже вычурными, нелепыми. В этом случае не нужно сильно «загружаться», принимаем факты такими, какими они есть, и просто учимся решать типовые, распространенные задания.

1) Ряды для чайников , и для самоваров сразу содержание:)

Для сверхбыстрой подготовки по теме есть экспресс-курс в pdf формате , с помощью которого реально «поднять» практику буквально за день.

Понятие числового ряда

В общем виде числовой ряд можно записать так: .
Здесь:
– математический значок суммы;
общий член ряда (запомните этот простой термин);
– переменная-«счётчик». Запись обозначает, что проводится суммирование от 1 до «плюс бесконечности», то есть, сначала у нас , затем , потом , и так далее – до бесконечности. Вместо переменной иногда используется переменная или . Суммирование не обязательно начинается с единицы, в ряде случаев оно может начинаться с нуля , с двойки либо с любого натурального числа .

В соответствии с переменной-«счётчиком» любой ряд можно расписать развёрнуто:
– и так далее, до бесконечности.

Cлагаемые – это ЧИСЛА , которые называются членами ряда. Если все они неотрицательны (больше либо равны нулю) , то такой ряд называют положительным числовым рядом .

Пример 1



Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.

Сначала , тогда:
Затем , тогда:
Потом , тогда:

Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:

Обратите внимание на принципиальное отличие от числовой последовательности ,
в которой члены не суммируются, а рассматриваются как таковые.

Пример 2

Записать первые три члена ряда

Это пример для самостоятельного решения, ответ в конце урока

Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:

Пример 3

Записать первые три члена ряда

На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:

Ответ оставляем в таком виде, полученные члены ряда лучше не упрощать , то есть не выполнять действия: , , . Почему? Ответ в виде гораздо проще и удобнее проверять преподавателю.

Иногда встречается обратное задание

Пример 4



Здесь нет какого-то четкого алгоритма решения, закономерность нужно просто увидеть .
В данном случае:

Для проверки полученный ряд можно «расписать обратно» в развернутом виде.

А вот пример чуть сложнее для самостоятельного решения:

Пример 5

Записать сумму в свёрнутом виде с общим членом ряда

Выполнить проверку, снова записав ряд в развернутом виде

Сходимость числовых рядов

Одной из ключевых задач темы является исследование ряда на сходимость . При этом возможны два случая:

1) Ряд расходится . Это значит, что бесконечная сумма равна бесконечности: либо суммы вообще не существует , как, например, у ряда
(вот, кстати, и пример ряда с отрицательными членами). Хороший образец расходящегося числового ряда встретился в начале урока: . Здесь совершенно очевидно, что каждый следующий член ряда больше, чем предыдущий, поэтому и, значит, ряд расходится. Ещё более тривиальный пример: .

2) Ряд сходится . Это значит, что бесконечная сумма равна некоторому конечному числу : . Пожалуйста: – этот ряд сходится и его сумма равна нулю. В качестве более содержательного примера можно привести бесконечно убывающую геометрическую прогрессию, известную нам ещё со школы: . Сумма членов бесконечно убывающей геометрической прогрессии рассчитывается по формуле: , где – первый член прогрессии, а – её основание, которое, как правило, записывают в виде правильной дроби. В данном случае: , . Таким образом: Получено конечное число, значит, ряд сходится, что и требовалось доказать.

Однако в подавляющем большинстве случаев найти сумму ряда не так-то просто, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически.

Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши , признак Лейбница и некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда , образно говоря – от «начинки» ряда. И очень скоро мы всё разложим по полочкам.

! Для дальнейшего усвоения урока необходимо хорошо понимать , что такое предел и хорошо уметь раскрывать неопределенность вида . Для повторения или изучения материала обратитесь к статье Пределы. Примеры решений .

Необходимый признак сходимости ряда

Если ряд сходится, то его общий член стремится к нулю: .

Обратное в общем случае неверно, т.е., если , то ряд может как сходиться, так и расходиться. И поэтому этот признак используют для обоснования расходимости ряда:

Если общий член ряда не стремится к нулю , то ряд расходится

Или короче: если , то ряд расходится. В частности, возможна ситуация, когда предела не существует вообще, как, например, предела . Вот сразу и обосновали расходимость одного ряда:)

Но гораздо чаще предел расходящегося ряда равен бесконечности, при этом в качестве «динамической» переменной вместо «икса» выступает . Освежим наши знания: пределы с «иксом» называют пределами функций , а пределы с переменной «эн» – пределами числовых последовательностей . Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но данный факт мало сказывается на методах решения пределов и способах раскрытия неопределенностей.

Докажем, что ряд из первого примера расходится.
Общий член ряда:

Вывод : ряд расходится

Необходимый признак часто применяется в реальных практических заданиях:

Пример 6

В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений , наверняка уловил, что когда старшие степени числителя и знаменателя равны , тогда предел равен конечному числу .


Делим числитель и знаменатель на

Исследуемый ряд расходится , так как не выполнен необходимый признак сходимости ряда.

Пример 7

Исследовать ряд на сходимость

Это пример для самостоятельного решения. Полное решение и ответ в конце урока

Итак, когда нам дан ЛЮБОЙ числовой ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли его общий член к нулю? Если не стремится – оформляем решение по образцу примеров № 6, 7 и даём ответ о том, что ряд расходится.

Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров № 6, 7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя . Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда.

Почему признак называется необходимым ? Понимайте самым естественным образом: для того, чтобы ряд сходился, необходимо , чтобы его общий член стремился к нулю. И всё бы было отлично, но этого ещё не достаточно . Иными словами, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится – он может, как сходиться, так и расходиться!

Знакомьтесь:

Данный ряд называется гармоническим рядом . Пожалуйста, запомните! Среди числовых рядов он является прима-балериной. Точнее, балеруном =)

Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится .

Также следует запомнить понятие обобщенного гармонического ряда:

1) Данный ряд расходится при . Например, расходятся ряды , , .
2) Данный ряд сходится при . Например, сходятся ряды , , . Еще раз подчеркиваю, что почти во всех практических заданиях нам совершенно не важно, чему равна сумма , например, ряда , важен сам факт его сходимости .

Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .

Вообще, рассматриваемый материал очень похож на исследование несобственных интегралов , и тому, кто изучал эту тему, будет легче. Ну а тому, кто не изучал – легче вдвойне:)

Итак, что делать, если общий член ряда СТРЕМИТСЯ к нулю? В таких случаях для решения примеров нужно использовать другие, достаточные признаки сходимости / расходимости:

Признаки сравнения для положительных числовых рядов

Заостряю ваше внимание , что здесь речь уже идёт только о положительных числовых рядах (с неотрицательными членами) .

Существуют два признака сравнения, один из них я буду называть просто признаком сравнения , другой – предельным признаком сравнения .

Сначала рассмотрим признак сравнения , а точнее, первую его часть:

Рассмотрим два положительных числовых ряда и . Если известно , что ряд – сходится , и, начиная с некоторого номера , выполнено неравенство , то ряд тоже сходится .

Иными словами: Из сходимости ряда с бОльшими членами следует сходимость ряда с меньшими членами . На практике неравенство часто выполнено вообще для всех значений :

Пример 8

Исследовать ряд на сходимость

Во-первых, проверяем (мысленно либо на черновике) выполнение :
, а значит, «отделаться малой кровью» не удалось.

Заглядываем в «пачку» обобщенного гармонического ряда и, ориентируясь на старшую степень, находим похожий ряд: Из теории известно, что он сходится.

Для всех натуральных номеров справедливо очевидное неравенство:

а бОльшим знаменателям соответствуют мЕньшие дроби:
, значит, по признаку сравнения исследуемый ряд сходится вместе с рядом .

Если у вас есть какие-то сомнения, то неравенство всегда можно расписать подробно! Распишем построенное неравенство для нескольких номеров «эн»:
Если , то
Если , то
Если , то
Если , то
….
и теперь-то уж совершенно понятно, что неравенство выполнено для всех натуральных номеров «эн».

Проанализируем признак сравнения и решенный пример с неформальной точки зрения. Все-таки, почему ряд сходится? А вот почему. Если ряд сходится, то он имеет некоторую конечную сумму : . И поскольку все члены ряда меньше соответствующих членов ряда , то ясен пень, что сумма ряда не может быть больше числа , и тем более, не может равняться бесконечности!

Аналогично можно доказать сходимость «похожих» рядов: , , и т.д.

! Обратите внимание , что во всех случаях в знаменателях у нас находятся «плюсы». Наличие хотя бы одного минуса может серьёзно осложнить использование рассматриваемого признака сравнения . Например, если ряд таким же образом сравнить со сходящимся рядом (выпишите несколько неравенств для первых членов), то условие не будет выполняться вообще! Здесь можно извернуться и подобрать для сравнения другой сходящийся ряд, например, , но это повлечёт за собой лишние оговорки и другие ненужные трудности. Поэтому для доказательства сходимости ряда гораздо проще использовать предельный признак сравнения (см. следующий параграф).

Пример 9

Исследовать ряд на сходимость

И в этом примере я предлагаю вам самостоятельно рассмотреть вторую часть признака сравнения :

Если известно , что ряд – расходится , и, начиная с некоторого номера (часто с самого первого), выполнено неравенство , то ряд тоже расходится .

Иными словами: Из расходимости ряда с меньшими членами следует расходимость ряда с бОльшими членами .

Что нужно сделать?
Нужно сравнить исследуемый ряд с расходящимся гармоническим рядом . Для лучшего понимания постройте несколько конкретных неравенств и убедитесь в справедливаости неравенства .

Решение и образец оформления в конце урока.

Как уже отмечалось, на практике только что рассмотренный признак сравнения применяют редко. Настоящей «рабочей лошадкой» числовых рядов является предельный признак сравнения , и по частоте использования с ним может конкурировать разве что признак Даламбера .

Предельный признак сравнения числовых положительных рядов

Рассмотрим два положительных числовых ряда и . Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу : , то оба ряда сходятся или расходятся одновременно .

Когда применяется предельный признак сравнения? Предельный признак сравнения применяется тогда, когда «начинкой» ряда у нас являются многочлены. Либо один многочлен в знаменателе, либо многочлены и в числителе и в знаменателе. Опционально многочлены могут находиться под корнями.

Разделаемся с рядом, для которого забуксовал предыдущий признак сравнения.

Пример 10

Исследовать ряд на сходимость

Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения. Известно, что ряд – сходится. Если нам удастся показать, что равен конечному, отличному от нуля числу, то будет доказано, что ряд – тоже сходится.


Получено конечное, отличное от нуля число, значит, исследуемый ряд сходится вместе с рядом .

Почему для сравнения был выбран именно ряд ? Если бы мы выбрали любой другой ряд из «обоймы» обобщенного гармонического ряда, то у нас не получилось бы в пределе конечного, отличного от нуля числа (можете поэкспериментировать).

Примечание : когда мы используем предельный признак сравнения, не имеет значения , в каком порядке составлять отношение общих членов, в рассмотренном примере отношение можно было составить наоборот: – это не изменило бы сути дела.

;

;

;

.

;

;

;

;

Решение. а) Так как при достаточно больших https://pandia.ru/text/79/302/images/image101_9.gif" width="31" height="23 src=">, а

~ , то ~ font-size:14.0pt">сравнения с данным гармонический ряд font-size:14.0pt">, т. е. .

font-size:14.0pt"> Поскольку предел конечен и отличен от нуля и гармонический ряд расходится, то расходится и данный ряд.

Б) При достаточно больших https://pandia.ru/text/79/302/images/image109_10.gif" width="111" height="31 src=">.gif" width="129" height="31 src=">.gif" width="132" height="64 src="> – общий член ряда, с которым будем сравнивать данный:

Font-size:14.0pt">Ряд сходится (ряд Дирихле с font-size:16.0pt">) , поэтому данный ряд также сходится.

В) , поэтому бесконечно малую font-size:14.0pt"> можно

заменить на эквивалентную ей при величину (https://pandia.ru/text/79/302/images/image058_20.gif" width="13" height="21 src="> при font-size: 20.0pt">) . ;

;

;

г )

;

.

1  


Читайте:



Эксперименты над людьми блок 731

Эксперименты над людьми блок 731

В одно время на территории сопок Маньчжурии начал работать страшный завод. В качестве «сырья» там использовали живых людей. А «продукция», которая...

Правила поведения в толпе

Правила поведения в толпе

«Незнакомый человек» - Не играй на улице с наступлением темноты. Не рассказывай, что дома хранятся дорогостоящие вещи. По первому требованию...

Блокадный крематорий ленинграда

Блокадный крематорий ленинграда

Про буржуйки и другие мелочиОпять небольшое вступление. Не могу не помянуть рецензию Олега Матисона «как Вы согревались в квартирах вне..., как...

Упражнение Прилагательное или наречие?

Упражнение Прилагательное или наречие?

Большинство наречий оканчивается на –ly , но существуют также некоторые прилагательные, которые тоже оканчиваются на –ly . Примеры: costly –...

feed-image RSS