Главная - Отношения
Объекты биотехнологии, основные требования к их применению. Обьекты биотехнологии и их уровни Основными объектами биотехники являются

Объекты, используемые в биотехнологии (они включают представителей, как прокариот, так и эукариот), чрезвычай­но разнообразны по своей структурной организации и био­логическим характеристикам. К объектам биотехнологии относятся:

Бактерии и цианобактерии;

Водоросли;

Лишайники;

Водные растения;

Клетки растений и животных.

В группу низших растений входят и микроскопически малые организмы (одноклеточные и многоклеточные), и очень крупные по размерам. Но все они объединены таки­ми общими признаками, как отсутствие расчленения тела на вегетативные органы и разнообразие способов размноже­ния.

К низшим относят следующие отделы: Вирусы, Бакте­рии, группа отделов Водоросли (Сине-зеленые, Зеленые, Ди­атомовые, Бурые, Красные и др.), Миксомицеты, Грибы, Лишайники. По способу питания их подразделяют на две группы: автотрофы (водоросли и лишайники), способные к фотосинтезу, и гетеротрофы (вирусы, бактерии - за не­большим исключением, - миксомицеты, грибы), исполь­зующие для питания готовые органические вещества.

Низшие растения прошли длинный исторический путь развития, но многие их представители до сих пор сохрани­ли черты примитивной организации. На определенном эта­пе развития они дали начало высшим растениям, венцом которых являются покрытосеменные.

Структура. Вирусные частицы (вирионы) имеют белко­вую капсулу - капсид, содержащий геном вируса, пред­ставленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров - белковых комп­лексов, состоящих, в свою очередь, из протомеров. Вири­оны часто имеют правильную геометрическую форму (ико­саэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими ее белками и, следовательно, может быть построена из стандартных бел­ков одного или нескольких видов, что позволяет вирусу «экономить» место в геноме. Белки капсида комплементар­ны определенным молекулярным структурам в клетке хо­зяина и вступают с ними во взаимодействие, необходимое для проникновения и существования вируса. Капсид защи­щает вирус только вне живой клетки. Вне клетки-хозяина вирусы ведут себя как вещество (могут быть получены в кристаллической форме); попав в живую клетку, они вновь проявляют активность.


Механизм инфицирования. Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на следующие этапы.

Присоединение к клеточной мембране - так назы­ваемая адсорбция. Обычно, для того чтобы вирус адсорби­ровался на поверхности клетки, она должна иметь в соста­ве своей плазматической мембраны специфический белок (часто гликопротеин) - рецептор, специфичный для данно­го вируса. Наличие рецептора нередко определяет круг хо­зяев данного вируса, а также его тканеспецифичность.

Проникновение в клетку. На этом этапе вирусу необ­ходимо доставить внутрь клетки свою генетическую инфор­мацию. Некоторые вирусы привносят также собственные белки, необходимые для ее реализации. Различные вирусы для проникновения в клетку используют разные стратегии. Вирусы также различаются по локализации их реплика­ции: часть вирусов размножается в цитоплазме клетки, а часть - в ее ядре.

Перепрограммирование клетки. При заражении виру­сом в клетке активируются специальные механизмы проти­вовирусной защиты. Зараженные клетки начинают синте­зировать сигнальные молекулы, например интерфероны, переводящие окружающие здоровые клетки в противови­русное состояние и активирующие системы иммунитета. Повреждения, вызываемые размножением вируса в клетке, могут быть обнаружены системами внутреннего клеточного контроля, и такая клетка должна будет «покончить жизнь самоубийством» в ходе процесса, называемого апоптозом (или программируемой клеточной гибелью). От способности вируса преодолевать системы противовирусной защиты на­прямую зависит его выживание. Неудивительно, что мно­гие вирусы, эволюционируя, приобрели способность подав­лять синтез интерферонов, апоптозную программу и т. д. Кроме подавления противовирусной защиты, вирусы стре­мятся создать в клетке максимально благоприятные усло­вия для развития своего потомства.

Персистенция. Некоторые вирусы могут переходить в латентное состояние (так называемая персистенция), слабо вмешиваясь в процессы, происходящие в клетке, и активи­роваться лишь при определенных условиях. На этом по­строена, например, стратегия размножения некоторых бак­териофагов: до тех пор пока зараженная клетка находится в благоприятной среде, фаг не убивает ее, наследуется до­черними клетками и нередко интегрируется в клеточный геном. Однако при попадании зараженной фагом бактерии в неблагоприятную среду возбудитель захватывает контроль над клеточными процессами так, что клетка начинает производить материалы, из которых строятся новые фаги. Клетка превращается в «фабрику», способную производить многие тысячи фагов. Зрелые частицы, выходя из клетки, разрывают клеточную мембрану, тем самым убивая клетку. С персистенцией вирусов связаны некоторые онкологиче­ские заболевания.


Создание новых вирусных компонентов. Размноже­ние вирусов в самом общем случае предусматривает три процесса:

Транскрипцию вирусного генома, т. е. синтез вирус­ной мРНК;

Трансляцию мРНК, т. е. синтез вирусных белков;

Репликацию вирусного генома.

У многих вирусов существуют системы контроля, обес­печивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной мРНК накопле­но достаточно, транскрипция вирусного генома подавляет­ся, а репликация, напротив, активируется.

Созревание вирионов и выход из клетки. В конце концов, новосинтезированные геномные РНК или ДНК «одевают­ся» соответствующими белками и выходят из клетки. Сле­дует отметить, что активно размножающийся вирус не всег­да убивает клетку-хозяина. В некоторых случаях дочерние вирусы отпочковываются от плазматической мембраны, не вызывая ее разрыва. Таким образом, клетка может про­должать жить и продуцировать вирус.

Классификация вирусов. Систематику и таксономию вирусов кодифицирует и поддерживает Международный комитет по таксономии вирусов (International Committee on Taxonomy of Viruses, ICTV), поддерживающий также и так­сономическую базу The Universal Virus Database ICTVdB.

Форма представления генетической информации лежит в основе современной классификации вирусов. В настоящее время их подразделяют на ДНК- и РНК-содержащие вирусы.

Значение вирусов. Вирусы вызывают ряд опасных забо­леваний человека (оспу, гепатит, грипп, корь, полиомие­лит, СПИД, рак и т. д.), растений (мозаичную болезнь таба­ка, томата, огурца, карликовость, увядание земляники), животных (чуму свиней, ящур). Однако препараты соответ­ствующих бактериофагов применяют для лечения бактери­альных заболеваний - дизентерии и холеры.

Получение интерферона - особого клеточного белка, препятствующего размножению вирусов, - широко ис­пользуют в медицине, особенно во время вспышек эпидемий гриппа. Это вещество универсального действия, активное по отношению ко многим вирусам, хотя чувствительность разных вирусов к нему неодинакова. Будучи продуктом са­мой клетки, интерферон полностью лишен токсического воздействия на нее. Сейчас применяют готовый интерфе­рон, его можно синтезировать в клетках, культивируемых вне организма.

3.Бактерии

До конца 1970-х гг. термин «бактерия» служил синони­мом прокариот, но в 1977 г. на основании данных молеку­лярной биологии прокариоты подразделили на царства архебактерий и эубактерий (собственно бактерий).

Строение бактерий. Подавляющее большинство бакте­рий (за исключением актиномицетов и нитчатых цианобак­терий) одноклеточны. По форме клеток они могут быть шаровидными (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже - звездчатыми, тетраэдрическими, куби­ческими, С- или О-образными. Обязательными клеточными структурами бактерий являются:

Нуклеоид;

Рибосомы;

Цитоплазматическая мембрана (ЦПМ).

Прокариоты, в отличие от эукариот, не имеют в цито­плазме обособленного ядра. Вся необходимая для жизнеде­ятельности бактерий генетическая информация содержится и одной двухцепочечной ДНК (бактериальная хромосома), имеющей форму замкнутого кольца. Она в одной точке прикреплена к ЦПМ. ДНК в развернутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, т. е. практически все прокариоты гаплоидны, хотя в отдельных случаях одна клетка может содержать несколько копий своей хромосо­мы. Деление хромосомы сопровождается делением клетки. Область клетки, в которой локализована хромосома, называется нуклеоидом; она не окружена ядерной мембраной. 1$ связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, т. е. процессы транскрип­ции и трансляции могут протекать одновременно. Ядрыш­ка нет.

Помимо хромосомы, в клетках бактерий часто находят­ся плазмиды - замкнутые в кольцо небольшие молекулы ДНК, способные к независимой репликации. Они содержат дополнительные гены, необходимые лишь в специфических условиях. В них кодируются механизмы устойчивости к от­дельным лекарственным препаратам, способности к перено­су генов при конъюгации, синтеза веществ антибиотиче­ской природы, способности использовать некоторые сахара или обеспечивать деградацию ряда веществ. То есть плаз­миды действуют как факторы адаптации. В некоторых слу­чаях гены плазмиды могут интегрировать в хромосому бак­терии.

Рибосомы прокариот отличаются от таковых у эукариот и имеют константу седиментации 70 S (у эукариот - 80 S).

У разных групп прокариот имеются локальные впячива- ния ЦПМ - мезосомы, выполняющие в клетке разнообраз­ные функции и разделяющие ее на функционально различ­ные части. Считается, что мезосомы принимают участие в делении бактерий. Когда на мембранах мезосом располага­ются окислительно-восстановительные ферменты, они явля­ются эквивалентами митохондрий клеток растений и живот­ных. У фотосинтезирующих бактерий во впячивания мембран вмонтирован пигмент - бактериохлорофилл. С его помощью и осуществляется бактериальный фотосинтез.

С внешней стороны от ЦПМ находятся несколько слоев (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки, пили).

У бактерий существует два основных типа строения кле­точной стенки, свойственных грамположительным и грамотрицательным видам. Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщи­ной 20-80 нм, построенный в основном из пептидогликана муреина с большим количеством тейхоевых кислот и не­большим количеством полисахаридов, белков и липидов. У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружен наружной мембраной, имеющей, как правило, неровную, искривленную форму.

С внешней стороны от клеточной стенки может нахо­диться капсула - аморфный слой гидратированных поли­сахаридов, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру.

Многие бактерии способны к активному движению с по­мощью жгутиков - выростов цитоплазмы.

Размножение бактерий. Бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием. Для одной группы одноклеточных цианобактерий описано множественное де­ление (ряд быстрых последовательных бинарных делений, приводящих к образованию от 4 до 1000 новых клеток под оболочкой материнской клетки).

У прокариот может происходить горизонтальный пере­нос генов. При конъюгации клетка-донор в ходе непосред­ственного контакта передает клетке-реципиенту часть свое­го генома (в некоторых случаях - весь геном). Участки ДНК донорной клетки могут обмениваться на гомологич­ные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.

Бактериальная клетка может поглощать и свободно на­ходящуюся в среде ДНК, включая ее в свой геном. Данный процесс носит название трансформации. В природных усло­виях обмен генетической информацией протекает с по­мощью бактериофагов (трансдукция). При горизонтальном переносе новых генов не образуется, однако осуществляется создание разных генных сочетаний. Эти свойства бактерий очень важны для генетической инженерии.

Спорообразование у бактерий. Некоторые бактерии об­разуют споры. Их формирование характерно для особо ус­тойчивых форм с замедленным метаболизмом и служит для сохранения в неблагоприятных условиях, а также для рас­пространения. Споры могут сохраняться продолжительное время, не теряя жизнеспособности. Так, эндоспоры многих бактерий способны выдерживать 10-минутное кипячение при 100 °С, высушивание в течение тысячи лет и, по неко­торым данным, сохраняются в жизнеспособном состоянии в почвах и горных породах миллионы лет.

Метаболизм бактерий. За исключением некоторых спе­цифических моментов, биохимические пути, по которым осуществляется синтез белков, жиров, углеводов и нуклео­тидов, у бактерий схожи с таковыми у других организмов. Однако по числу возможных биохимических путей и, соот­ветственно, по степени зависимости от поступления органи­ческих веществ извне бактерии различаются. Часть бакте­рий может синтезировать все необходимые им органиче­ские молекулы из неорганических соединений (автотрофы), другие же требуют готовых органических соединений, ко­торые они способны лишь трансформировать (гетеротрофы).

Классификация бактерий. Наибольшую известность получила фенотипическая классификация бактерий, осно­ванная на строении их клеточной стенки. На основе этой классификации построен «Определитель бактерий Берги», девятое издание которого вышло в 1984-1987 гг. Крупней­шими таксономическими группами в ней стали четыре от­дела: Gracilicutes (грамотрицательные), Firmicutes (грамположительные), Tenericutes (микоплазмы) и Mendosicutes (археи).

Значение бактерий. Бактерии-сапрофиты играют боль­шую роль в круговороте веществ в природе, разрушая в экосистемах мертвый органический материал. Хорошо из­вестна их роль во всех биогеохимических циклах на нашей планете. Бактерии принимают участие в круговоротах хи­мических элементов (углерода, железа, серы, азота, фосфо­ра и др.), в процессах почвообразования, определяют пло­дородие почв.

Многие бактерии «населяют» организмы животных и человека, стоят на страже здоровья.

Биотехнологические функции, выполняемые бактериями, разнообразны. Их применяют при производстве различных веществ: уксуса (Gluconobacter suboxidans), молочнокислых напитков и продуктов (Lactobacillus, Leuconostoc), а также микробных инсектицидов (Bacillus thuringiensis) и герби­цидов, белков (Methylomonas), витаминов (Clostridium - рибофлавин); при переработке отходов, получении бактери­альных удобрений, растворителей и органических кислот, биогаза и фотоводорода. Широко используется такое свой­ство некоторых бактерий, как диазотрофность, т. е. способ­ность к фиксации атмосферного азота.

Благодаря быстрому росту и размножению, а также простоте строения, бактерии активно применяют в научных исследованиях по молекулярной биологии, генетике и био­химии, в генно-инженерных работах при создании геном­ных клонотек и введении генов в растительные клетки (агробактерии). Информация о метаболических процессах бактерий позволила производить бактериальный синтез ви­таминов, гормонов, ферментов, антибиотиков и др.

Перспективными направлениями являются очистка с использованием бактерий почв и водоемов, загрязненных нефтепродуктами или ксенобиотиками, а также обогащение руд с помощью сероокисляющих бактерий.

Нельзя забывать о том, что отдельные виды бактерий вызывают опасные заболевания у человека (чуму, холеру, туберкулез, брюшной тиф, сибирскую язву, ботулизм и др.), животных и растений (бактериозы). Некоторые виды бактерий могут разрушать металл, стекло, резину, хлопок, древесину, масла, лаки, краски.

В химико-биологических процессов относятся те из них, в которых используют биологические объекты различной природы (микробной, растительной или животной), например, при производстве продукции различного назначения

Антибиотиков, вакцин, ферментов, кормового и пищевого белка, гормонов, аминокислот, био-газа, органических удобрений и т.п..

Объекты биотехнологии очень разнообразны и диапазон их распространяется от организованных частей (вирусов) до человека (рис. 1.1.).

Биообъекты характеризуются такими показателями, как уровень структурной организации, способность к размножению (или репродукции), наличие или отсутствие собственного метаболизма при культивировании в надлежащих условиях. Что касается характера биообъектов, то под этим следует понимать их структурную организацию. В таком случае биообъекты могут быть молекулами (ферменты, иммуномодуляторы, нуклеозиды, олиго-и полипептиды и др.), организованными частями (вирусы, фаги), одноклеточными (бактерии, дрожжи) и многоклеточными особями (нитчатые высшие грибы, растительные ткани, однослойные культуры клеток млекопитающих), целыми организмами растений и животных. Но даже при использовании биомолекулы как объекта биотехнологии ее первоначальный биосинтез осуществляется в большинстве случаев соответствующими клетками. Следовательно, можно утверждать, что объекты биотехнологии принадлежат или к микробам, или в растительных и животных организмов.

Таким образом, независимо от систематического положения биообъектов на практике используют или естественные организованы частицы (фаги, вирусы) и клетки с естественной генетической информацией, или клетки с искусственно заданной генетической информации, то есть в любом случае используют клетки - то микроорганизм, растение, животное или человек. Сейчас большинство объектов биотехнологии составляют микробы, мир которых очень велик и разнообразен. К ним относятся все прокариоты - бактерии, актиномицеты, риккетсии, сине-зеленые водоросли и часть эукариот - дрожжи, нитчатые грибы, простейшие и водоросли (рис. 1.2). Микробами среди растений есть микроскопические водоросли, а среди животных - микроскопические простейшие. Основой современного биотехнологического производства является микробиологический синтез, т.е. синтез различных веществ с помощью микроорганизмов. Объекты растительного и животного происхождения еще не нашли широкого распространения из-за высокой требовательности к условиям культивирования, что значительно здо-рожчуе производство.

Для реализации биотехнологических процессов важными параметрами биообъектов являются: чистота, скорость размножения клеток и репродукции вирусных частей, активность и стабильность биомоле-кул или биосистем.

При использовании ферментов (в изолированном или иммобилизованных состоянии) как биокатализаторов возникает необходимость охраны их от деструкции банальной сапрофитной микрофлорой, которая может проникать в сферу биотехнологического процесса извне вследствие нестерильности системы, например, из-за негерметичности оборудования. Скорость размножения клеток и репродукция вирусных частей прямо пропорционально отражаются на увеличении биомассы и образовании метаболитов.

Активность и стабильность пребывания биообъектов в активном состоянии - важнейшие показатели их пригодности для длительного использования в биотехнологии.

Главным звеном биотехнологического процесса, определяет его сущность, является клетка. Именно в ней синтезируется целевой продукт. По меткому выражению Овчинникова Ю.А. (1985), клетка - это миниатюрный химический завод, который работает с колоссальной производительностью, с предельной согласованности и по заданной программе. В ней ежеминутно синтезируются сотни сложных соединений, включая гигантские биополимеры, в первую очередь белки.

Методы биотехнологии. Биотехнологии присущи свои специфические методы. Это крупномасштабное глубинное культивирование биообъектов в периодическом, полунепрерывного или непрерывном режиме и выращивания клеток растительных и животных тканей в особых условиях. Биотехнологические методы культивирования биообъектов выполняются в специальном оборудовании, например, в ферментерах выращивают бактерии и грибы при получении антибиотиков, ферментов, органических кислот, некоторых витаминов и т.п..

В подобных ферментерах выращивают некоторые клетки человека (бласты) для получения белка-интерферона, а также некоторые виды растительных клеток. Однако последние чаще выращивают в стационарных условиях на среде с уплотненной (например, агар-зированный) подкладкой в стеклянных или полиэтиленовых емкостях.

Другие методы, используемые в биотехнологии, являются общими, например с методами в микробиологии, биохимии, органической химии и других науках. Особенно нужно выделить методы клеточной и генетической инженерии, лежащие в основе современной биотехнологии.

Отличием методов, используемых в биотехнологии, является то, что они должны выполняться, как правило, в асептических условиях (от греческого а - нет, septicos - гнилостный), т.е. с исключения возможности попадания в среду, где культивируется биообъектов, патогенных и сапрофитных микроорганизмов.

Патогенные виды представляют непосредственную опасность для за-деяний в производстве людей и для потребителей конечных продуктов; сапрофитные виды могут выступать конкурентами за питательные субстраты, антагонистами, продуцентами токсических веществ, включая пирогены.

Одним из основных понятий в биотехнологии является понятие «биосистема». Обобщенные характеристики биологической системы (живой системы) могут быть сведены к трем признакам.

  • 1. Живые системы являются гетерогенными открытыми системами, которые обмениваются с окружающей средой веществами и энергией.
  • 2. Эти системы являются самоуправляемыми, саморегулирующими, способными к обмену информацией с окружающей средой для поддержания своей структуры и управления процессами метаболизма.
  • 3. Живые системы являются самовоспроизводящимися.

В качестве биологических систем, объектов, которые использует биотехнология, следует назвать одноклеточные организмы, среди них выделяют группы акариотов (вирусы), прокариотов (бактерии. сине-зеленые водоросли) и эукариотов (грибы, протозойные, водоросли). Их размеры варьируют от нанометров (вирусы, бактериофаги) до миллиметров и сантиметров (гигантские водоросли). Помимо вышеперечисленных, в качестве объектов биотехнологии используются клетки и ткани растений, животных и человека, вещества биологического происхождения (например, ферменты, простагландины, пектины, нуклеиновые кислоты), молекулы.

Выбор этих объектов обусловлен следующими моментами:

  • 1. Клетки являются своего рода «биофабриками», вырабатывающими в процессе жизнедеятельности разнообразные ценные продукты: белки, жиры, углеводы, витамины. нуклеин. кислоты, антибиотики, антитела, ферменты, спирты и пр. Многие из этих продуктов, крайне необходимые человеку, пока недоступны для получения «небиотехнологическими» способами из-за дефицитности или высокой стоимости сырья или сложности технологических процессов.
  • 2. Клетки чрезвычайно быстро воспроизводятся. Так, бактериальная клетка делится через каждые 20-60 мин, дрожжевая - через 1,5-2 часа, животная - через 24 часа, что позволяет за относительно короткое время искусственно нарастить на сравнительно дешевых и недефицитных питательных средах в промышленных. масштабах огромные количества биомассы микробных, животных и растительных клеток. В процессе жизнедеятельности при их выращивании в среду поступает большое количество ценных продуктов.
  • 3. Биосинтез сложных веществ, таких как белки, антибиотики, антигены и пр. значительно доступнее и дешевле, чем химический синтез. В качестве сырья для биосинтеза используют отходы сельскохозяйственной, рыбной продукции, пищевой промышленности, растительное сырье (дрожжи, древесина и т.п.)
  • 4. Возможность проведения биотехнологического процесса в промышленных масштабах, т.е. наличие соответствующего технологического оборудования, доступность сырья, технологии переработки.

Методы применяемые в биотехнологии определяются двумя уровнями: клеточным и молекулярным. И тот и другой определяются биообъектами.

В первом случае имеют дело с бактериальными клетками (для получения вакцинных препаратов), актиномицетов (при получении антибиотиков), микромицетов (при получении лимонной кислоты), животных клеток (при изготовлении противовирусных вакцин), клеток человека (при изготовлении интерферона) и др.

Во втором случае имеют дело с молекулами, например с нуклеиновыми кислотами. Однако в конечной стадии молекулярный уровень трансформируется в клеточный.

При выборе биологического объекта во всех случаях нужно соблюдать принцип технологичности. Так, если в течение многочисленных циклов культивирования свойства биологического объекта не сохраняются или претерпевают изменения, то данный объект следует признать нетехнологичным, т.е. неприемлемым для следующих после стадии лабораторных исследований технологических разработок.

Большое внимание ученые уделяют целенаправленному созданию новых, не существующих в природе биологических объектов. В первую очередь следует отметить создание новых клеток микроорганизмов, растений, животных методами генной инженерии. Созданию новых биологических объектов, безусловно, способствует совершенствование правовой охраны изобретений в области генетической инженерии и биотехнологии в целом. Сформировалось направление, занимающееся конструированием искусственных клеток. В настоящее время существуют методы, позволяющие получить искусственные клетки с использованием различных синтетических и биологических материалов, например, искусственной клеточной мембраной с заданной проницаемостью и поверхностными свойствами. Некоторые материалы могут быть заключены внутри таких клеток: ферментные системы, клеточные экстракты, антитела, гормоны, биологические клетки и др.

Например, применение искусственных клеток дало положительные результаты в производстве интерферонов, иммуносорбентов.

Также учеными используются и анаэробные организмы. Анаэробные процессы привлекают внимание исследователей в связи с недостатком энергии и возможностью получения биогаза.

Анаэробные микроорганизмы успешно используются для переработки отходов (биомассы растений, отходов пищевой промышленности, бытовых отходов и др.) и стоков (бытовые и промышленные стоки, навоз) в биогаз.

Как следует из всего выше изложенного, в биотехнологических процессах возможно использование ряда биологических объектов, характеризующихся различными уровнями сложности: клеточным, субклеточным, молекулярным. От особенностей конкретного биологического объекта зависит подход к созданию всей биотехнологической системы в целом.

Объекты и методы биотехнологии

Лекция 2

Форма проведения лекции: обзорная лекция

1. Объекты биотехнологии

2. Многообразие биотехнологических процессов.

3. Основные направления биотехнологии

1. Биообъект – центральный и обязательный элемент биотехнологического производства, создающий его специфику.

Биообъектом может быть целостный сохранивший жизнеспособность многоклеточный или одноклеточный организм. Им могут являться изолированные клетки многоклеточного организма, а также вирусы и выделенные из клеток мультиферментные комплексы, включенные в определенный метаболический процесс. Наконец, биообъектом может быть индивидуальный изолированный фермент.

Функция биообъекта - полный биосинтез целевого продукта, включающий ряд последовательных ферментативных реакций или катализ лишь одной ферментативной реакции, которая имеет ключевое значение для получения целевого продукта.

Биообъект, осуществляющий полный биосинтез целевого продукта, называется продуцентом. Биообъект, являющийся индивидуальным ферментом или выполняющий функцию одной ферментативной реакции, используемой биотехнологом, называют промышленным катализатором.

Таким образом, к биообъектам относятся как макромолекулы, так и микро- и макроорганизмы.

В качестве макромолекул в промышленном производстве используются ферменты всех известных классов, но наиболее часто – гидролазы и трансферазы. Доказано, что использование ферментов в производстве в иммобилизованном виде, то есть связанных с нерастворимым носителем, наиболее рационально, так как в этом случае обеспечиваются многократность их применения и стандартность повторяющихся производственных циклов. С некоторой условностью «Лестница живых существ» начинается с вирусов. Последние в качестве биообъектов (с ослабленной патогенностью) используются прежде всего для приготовления вакцин.

Как биообъекты микробные клетки прокариот и эукариот в современном биотехнологическом производстве занимают доминирующее положение. Они являются продуцентами используемых в качестве лекарственных средств первичных метаболитов; аминокислот, азотистых оснований, коферментов, моно- и дисахаров, ферментов медицинского назначения, применяемых в заместительной терапии и т.д.

Микроорганизмы образуют огромное количество вторичных метаболитов, многие из которых нашли применение, например, антибиотики и другие корректоры гомеостаза клеток млекопитающих.

Высшие растения являются традиционным и к настоящему времени все еще наиболее обширным источником получения лекарственных средств. При использовании растений в качестве биообъектов основное внимание сосредоточено на вопросах культивирования растительной тканей на искусственных средах (каллусные и суспензионные культуры) и открывающихся при этом новых перспективах.



Традиционными поставщиками лекарственных и диагностических средств являются представители животного мира. Довольно часто в качестве биообъектов выступают млекопитающие, птицы, рептилии, амфибии, членистоногие, рыбы, моллюски. Разнообразие образуемых ими биологически активных соединений, нашедших применение в медицине, крайне велико.

В последние годы в связи с развитием технологии рекомбинантной ДНК стремительно возрастает важность такого биообъекта, как человек, хотя на первый взгляд, это кажется парадоксальным.

В принципе, человек уже давно мог быть отнесен к биообъектам, например, при получении гомологичной антисыворотки или в случае использования тканей и органов человека для их пересадки, например, костного мозга, почек и т.д.

Однако биообъектом с позиций биотехнологии (при использовании биореакторов) человек стал лишь после реализации возможности клонирования его ДНК (точнее его экзонов) в клетках микроорганизмов. За счет такого подхода был ликвидирован дефицит сырья для получения видоспецифических белков человека.

Характер биологической системы (микроорганизмы, клеточные линии насекомых, растений и млекопитающих, многоклеточные организмы) исключительно важен для биотехнологического процесса. Во многих случаях именно генетически модифицированная самовоспроизводящаяся биологическая единица (микроорганизм, вирус, растение или животное) является конечным коммерческим продуктом.

Прокариоты и эукариоты. Все живые организмы принято делить на две основные группы: прокариоты и эукариоты. Приблизительно 1,5 млрд лет назад произошел переход от маленьких клеток со сравнительно простой внутренней структурой (так называемых прокариот, к которым относятся различные бактерии) к большим по размеру и значительно более сложно устроенным эукариотическим клеткам, подобным клеткам высших растений и животных.

Основные структурные различия прокариот и эукариот:

· наличие или отсутствие ядра, содержащего хромосомную ДНК;

· строение и химический состав клеточной стенки;

· наличие или отсутствие субклеточных цитоплазматических органелл.

В прокариотической бактериальной клетке хромосомная ДНК находится непосредственно в цитоплазме, клетка окружена ригидной клеточной стенкой. В клетке нет субклеточных цитоплазматических органелл. В оптимальных условиях прокариотическая клетка может делиться каждые 20 минут и таким образом давать жизнь более 10 млрд клеток менее чем за сутки.

В эукариотической клетке имеется ядро, отделенное от цитоплазмы ядерной мембраной, хромосомная ДНК находится в ядре. В цитоплазме содержатся различные субклеточные органеллы: мембраны, окружающие ядро, митохондрии, образующие лабиринт эндоплазматического ретикулума (ЭПР), где синтезируются липиды и мембранные белки. Мембраны формируют стопки утолщенных пузырьков, составляющих аппарат Гольджи , который участвует в синтезе и транспорте различных органических молекул. Мембраны окружают лизосомы (субклеточные структуры диаметром 0,2-0,5 мкм), содержащие гидролитические ферменты, необходимые для внутриклеточного пищеварения.

Мембраны, таким образом, защищают от действия этих ферментов белки и нуклеиновые кислоты самой клетки. Мембраны также окружают пероксисомы, содержащие окислительные ферменты, производящие и разрушающие опасные высокореакционоспособные перекиси (пероксиды). Обмен между внутриклеточными, окруженными мембранами структурами и внеклеточной средой происходит с помощью эндоцитоза.

2,3 Мир растений определяет благополучие человечества. Известно, что 1,9 млрд тонн (- 99%) употребляемого сухого вещества человечество получает из растений. Растения широко используют в различных областях производства: сельское хозяйство, получение продуктов питания, строительство, производство тканей, бумаги и энергии. Особый интерес представляет получение различных химических соединений, биологически активных веществ (БАВ), из которых производят лекарственные препараты (фитопрепараты), химикаты для сельского хозяйства и пр.

Существенное увеличение урожая сельскохозяйственных культур в 20 веке достигнуто за счет химизации, механизации и мелиорации сельского хозяйства, что привело к загрязнению окружающей среды, истощению энергетических ресурсов, возрастанию затрат на единицу продукции. Кроме того, дополнительный прогресс в улучшении сельскохозяйственных культур в большинстве случаев достиг своего предела. Поэтому крайне необходимы поиск и внедрение новых подходов.

Среди новых подходов к этой проблеме наиболее перспективным является применение клеточной инженерии (синоним: клеточная и тканевая биотехнология). Клеточная инженерия (клеточная и тканевая биотехнология) основана на использовании принципиально нового метода – метода изолированной культуры клеток эукариотических организмов (растений, животных). Выращивание изолированных клеток и тканей на искусственных питательных средах (in vitro) в стерильных условиях получило название метода культуры изолированных тканей.

Роль культуры изолированных клеток и тканей в биотехнологии следует рассматривать в трех направлениях (Шевелуха и др., 2003). Первое связано со способностью изолированных растительных клеток продуцировать ценные для медицины, парфюмерии, косметики и других отраслей промышленности вещества вторичного синтеза: алкалоиды, стероиды, гликозиды, гормоны, эфирные масла и др. Как правило, вторичные вещества получают из каллусной ткани, выращенной на твердой (агаризованной) или жидкой (суспензионная культура) питательной среде. На основе клеточных технологий получают такие медицинские препараты, как диосгенин из клеток диоскореи, тонизирующие вещества из клеток женьшеня, используемые в медицине и парфюмерии. Продуктивность культивируемых клеток в результате клеточной селекции может значительно превышать продуктивность целых растений. Преимуществом такого способа получения веществ вторичного синтеза является также возможность использовать для этой цели растения, не произрастающие в наших природных условиях и получать продукцию круглый год. Второе направление – это использование культуры изолированных клеток для размножения и оздоровления посадочного материала. Этот метод, названный клональным микроразмножением растений, позволяет получать от одной меристемы сотни тысяч растений в год.

Третье направление – использование изолированных клеток в селекции растений, дающее возможность получать быстрорастущие растения, устойчивые к различным неблагоприятным факторам среды: засуха, засоление, низкие и высокие температуры, фитопатогены, тяжелые металлы и др. Вместе с тем это направление предусматривает создание новых растений путем слияния изолированных протопластов и получения неполовых (соматических) гибридов.

Без сомнения 21 век будет веком трансгенных растений. Эти растения, устойчивые к гербицидам, насекомым, вирусам быстро вытесняют старые сорта сельскохозяйственных культур. Перенос в изолированные протопласты чужеродных генов методами генной инженерии является перспективным методом получения трансгенных растений.

Микроскопические грибы как объект биотехнологии

Этим уроком завершается изучение темы «Основы биотехнологии», которая самостоятельным разделом входит в тему «Основы селекции» в 11-м классе с углубленным изучением биологии.

Цель урока: усвоение учащимися знаний об использовании микроскопических грибов в пищевой, фармацевтической промышленности, сельском хозяйстве, при утилизации бытовых отходов, в качестве объекта биотехнологических исследований, направленных на оптимизацию существующих и создание новых производств.

Оборудование: таблички с терминами, прикрепляющиеся на металлическую доску с помощью магнитов, таблица «Микробные методы рециклизации» (на каждой парте), тесты для контроля знаний, костюмы для инсценировки.

ХОД УРОКА

Активизация познавательной деятельности

Восстановление в памяти изученного ранее материала.

– Какую тему мы изучаем? (Основы биотехнологии.)
– Что такое биотехнология? (Использование живых организмов и биологических процессов в производствах.)
– С какими объектами биотехнологии мы познакомились на предыдущих уроках? (С бактериями.)
– Как называется наука, изучающая грибы? (Микология.)

Изучение нового материала

Учитель формулирует основные задачи урока.

Б. Просмотр инсценировки «Микроскопические грибы» (см. «Биология», № 5/1997).

В. Обсуждение спектакля. (По ходу обсуждения на доске вычерчивается схема.)

1. Дрожжи как наиболее изученный объект биотехнологических исследований

(выступление учащегося, сыгравшего в спектакле Дрожжевую клетку)

Дрожжи – сборная группа грибов, не имеющих типичного мицелия и существующих в виде отдельных почкующихся или делящихся клеток.
Известно около 500 видов дрожжей. Все дрожжи – гетеротрофы с окислительным (дыхание) или бродильным (брожение) типом обмена веществ. Дрожжи синтезируют белки, липиды, внеклеточные полисахариды, витамины группы В. Вызывают болезни: молочницу (криптококкоз, кандидоз) и другие микозы.
Использование человеком: пивоварение, виноделие, спиртовая промышленность, хлебопечение, микробиологическая промышленность (кормовой белок, ферменты), а также как объект исследований в биоэнергетике, радиобиологии, генетике.
Большинство из используемых человеком видов относятся к роду сахаромицеты (Saccharomyces ) из класса аскомицетов (Ascomycota ), которые активно сбраживают простые углеводы до этилового спирта. Спиртовое брожение впервые было подробно изучено Луи Пастером.

Схема окисления углеводов до этанола:

сахар ---> пируват ---> СO 2 + ацетальдегид ---> этанол.

Наиболее детально изучена генетика пекарских дрожжей S.cerevisiae . Методами генной инженерии в хромосомы клеток дрожжей встраивают и клонируют («размножают» при репликации хромосомальной ДНК) гены, ответственные за синтез гормонов и других ценных соединений.
Свойства дрожжей, ценные для биотехнологии: быстро растут, безопасны для человека, растут на дешевой среде (парафин, меласса, метиловый спирт). Недостаток – сложно получать внутриклеточные продукты, т.к. клетки покрыты очень прочной оболочкой. Наиболее часто применяемый способ получения внутриклеточных соединений – автолиз, т.е. разрушение клетки под действием ее собственных ферментов.

Хлебопечение. Раньше в хлебопечении повсеместно использовалось дрожжевое опарное тесто. Его и сейчас широко используют для выпечки ржаного хлеба, а также в домашнем хозяйстве. Для получения такого теста используют опару – небольшую порцию теста, оставленную от предыдущего замеса или замешанную заранее, до основного замеса. В опаре содержатся и размножаются дрожжи и молочнокислые бактерии, придающие черному хлебу приятную кислинку и аромат. Дрожжевой белый хлеб выпекают безопарным способом – дрожжи помещают вместе с мукой и др. компонентами сразу в основной замес. Непосредственно перед выпечкой содержащаяся в опаре смешанная популяция стимулируется к размножению добавлением молока, воды, сахара, муки. Полученное тесто «подходит», увеличиваясь в объеме за счет интенсивного выделения СО 2 при быстром размножении дрожжей, сбраживающих углеводы.

Виноделие. На поверхности и внутри ягод живут разнообразные микроорганизмы, среди которых много дрожжей. Поэтому отжатый сок – сусло – начинает бродить без дополнительного добавления дрожжей. На этом основано кустарное виноделие.
Процессу брожения могут помешать прежде всего уксусно- и молочнокислые бактерии, нежелательные дрожжи, дрожжеподобные грибы. Чтобы исключить риск порчи виноматериала при промышленном производстве вина в виноградное сусло вводят заранее выращенные и активированные винные дрожжи. Применяемые расы дрожжей, чаще всего относящиеся к сахаромицетам, и ход процесса брожения определяют тип вина. Так, например, при изготовлении хереса используют специальные хересные дрожжи и бочки с вином не заполняют доверху (что недопустимо при изготовлении других вин).
Процессы, используемые в виноделии, подробно изучил Луи Пастер. Дрожжи сбраживают сахара, содержащиеся в виноградном соке (см. схему выше). Брожение продолжается до тех пор, пока дрожжи не израсходуют весь сахар. Дрожжи образуют спирт лишь в отсутствие кислорода или при его недостатке. Если кислорода много, дрожжи окисляют сахар полностью до углекислого газа и воды. Пока брожение протекает бурно, выделяющийся углекислый газ предохраняет поверхность сусла от взаимодействия с кислородом воздуха. Когда брожение прекращается, бочку с молодым вином надо запечатать. Если этого не сделать, уксуснокислые бактерии, используя кислород, превратят спирт в уксусную кислоту. Именно таким образом получают винный (или яблочный) уксус. На основании результатов своих исследований Пастер рекомендовал виноделам Франции соблюдать микробиологическую чистоту при приготовлении вина: тщательно мыть бочки и окуривать вино сернистым ангидридом.

Пивоварение. Пивоварение, как и винокурение, – традиционное производство во многих странах мира. Как правило, оно индустриализировано сильнее, чем виноделие, и дрожжевой компонент имеет здесь еще большее значение. Применяемые штаммы – специальные виды сахаромицетов. Сбраживающие ячменное сусло дрожжевые клетки за короткий срок доводят содержание в нем спирта до 3–5%. Чтобы замедлить слишком интенсивное размножение дрожжей и накопить продукты, придающие пиву его вкус (альдегиды, кетоны, многоатомные спирты), ферментацию проводят при низких температурах – 2–8 °С. В этих условиях дальнейшее окисление альдегидов и спиртов почти не происходит.
Многие пивоварни и сейчас оснащены открытыми бродильными чанами, и лишь крупные заводы имеют гepмeтичные емкости. Крупные дрожжевые клетки в готовом пиве отмирают и оседают, небольшая их доля остается во взвеси, и продолжающееся брожение пива в емкостях для хранения обуславливает насыщение его углекислым газом.

2. Пенициллы

(сообщение учащегося)

Род Пенициллиум (Penicillium ) относится к порядку гифомицетов (Hyphomycetales ) из класса несовершенных грибов (Deuteromycota ). Естественное местообитание этих грибов – почва, они часто обнаруживаются на самых разных субстратах, главным образом растительного происхождения.
Еще в XV–XVI вв. в народной медицине при лечении гнойных ран использовалась зеленая плесень. В 1928 г. английский микробиолог Александр Флеминг заметил, что пеницилиум, случайно попавший в культуру стафилококка, полностью подавил рост бактерий. Эти наблюдения Флеминга легли в основу учения об антибиозе (антагонизме между отдельными видами микроорганизмов). В развитии исследований микробного антагонизма значительную роль сыграли Л.Пастер, И.И. Мечников.
Противомикробное действие зеленой плесени обусловлено особым веществом – пенициллином, выделяемым этим грибом в окружающую среду. В 1940 г. пенициллин был получен в чистом виде английскими исследователями Г.Флори и Э.Чейном, а в 1942 г., независимо от них, советскими учеными З.В. Ермольевой и Т.И. Балезиной. Во время второй мировой войны пенициллин спас жизни сотен тысяч раненых. Спрос на пенициллин был так велик, что его производство увеличилось с нескольких миллионов единиц в 1942 г. до 700 млрд единиц в 1945 г.
Пенициллин применяют при пневмонии, сепсисе, гнойничковых заболеваниях кожи, ангине, скарлатине, дифтерии, ревматизме, сифилисе, гонорее и других заболеваниях, вызванных грамположительными бактериями.
Открытие пенициллина положило начало поиску новых антибиотиков и источников их получения. С открытием антибиотиков появилась возможность успешного лечения почти всех инфекционных заболеваний, вызываемых микробами.
Но зеленые плесени успешно применяются не только в медицине. Большое значение имеют пенициллы вида P.roqueforti . В природе они обитают в почве. Мы хорошо знакомы с ними по группе сыров, характеризующихся «мраморностью»: «Рокфор», родиной которого является Франция, сыр «Горгонцола» из Северной Италии, сыр «Стилон» из Англии и др. Всем этим сырам свойственны рыхлая структура, специфический «плесневелый» вид (прожилки и пятна голубовато-зеленого цвета) и характерный аромат. P.roqueforti нуждается в малом количестве кислорода, выносит высокие концентрации углекислого газа.
При приготовлении мягких французских сыров «Камамбер», «Бри» и некоторых других используются P.camamberti и P.caseicolum , которые образуют на поверхности сыра характерный белый «войлочный» налет. под воздействием ферментов этих грибов сыр приобретает сочность, маслянистость, специфические вкус и аромат.

3. Аспергиллы

(сообщение учащегося)

(сообщение учащихся)

В мире ежегодно образуется огромное количество бытового мусора и отходов сельского и лесного хозяйства. Древесина и солома, а также бумажные отходы, которые составляют почти половину мусора, состоят из трех главных компонентов:

Избавляться от отходов следует, с одной стороны, как можно меньше загрязняя окружающую среду, а с другой – извлекая из них как можно больше энергии и углерода органических соединений. В настоящее же время отходы чаще всего сжигают или захоранивают необработанными, не получая в последнем случае даже тепловой энергии.

Однако возможны альтернативные подходы на основе использования грибов в сочетании с другими микроорганизмами. Один из путей рециклизации – разведение на древесных отходах съедобных грибов и кормовых дрожжей, но в общей сложности так перерабатывается не более 2% органических отходов.

Для разложения целлюлозы и лигнина предпочтительнее использовать именно грибы, т.к. активности содержащихся в них ферментов – целлюлаз и лигниназ – выше, чем у ферментов бактерий, особенно в кислой среде, которая свойственна древесным отходам (бактерии предпочитают слабощелочную среду).

Работа с табл. 1.

Таблица 1. Методы рециклизации с использованием грибов

Исходный материал

Ферментирующие организмы (участие грибов: + или ++)

Продукт, результат

Запахивание

солома, опилки и др.

микроорганизмы почвы (+)

хорошее разложение параллельно разрыхлению почвы, рекомендуется на влажных, тяжелых грунтах, на сухих, легких почвах нежелательно

Компостирование

любые органические остатки

спонтанно увеличивающиеся популяции почвенных организмов (+)

перегной, богатый гумусом и питательными веществами, внесение удобрений и оптимизация условий ускоряют процесс

Получение биогаза

навозная жижа, сточные воды

анаэробные бактерии, но предварительные аэробные этапы возможны с участием грибов

газовая смесь 70% СН4 и 30% СО 2 (топливо), остаток – ценное удобрение

Получение кормовых дрожжей

сульфитные стоки целлюлозно-бумажных предприятий

сandida utilis, другие дрожжеподобные грибы или дрожжи (++)

кормовые дрожжи

Метод «Natick»

предварительно обработанные отходы целлюлозы

Trichoderma viride. 1-й этап: предкультура (++)

неочищенный раствор глюкозы после отфильтровывания биомассы грибов и твердых остатков; цена за 1 кг 10%-ного раствора около 0,8 марки

6. Выводы по теме

Не бывает «хороших» и «плохих» грибов, все они – неотъемлемая часть микромира, обеспечивающего круговорот веществ в биосфере.

Таблица 2. Свойства грибов

отрицательные свойства

положительные свойства

дерматофиты

грибковые заболевания кожи

в природе разлагают кератин

спорынья

применяется в акушерстве, гинекологии

пенициллы

порча продуктов питания

применяются в производствах антибиотиков, сыров

аспергиллы

микозы (болезни птиц)

применяются в производствах сыров, соусов, сакэ

Человек должен изучать грибы, чтобы уменьшить или предотвратить наносимый ими вред и с пользой применять в практике своего хозяйствования.

Закрепление изученного материала

Для закрепления изученного материала учащиеся выполняют два варианта тестовых заданий.

Тестовые задания

Вариант 1

Выпишите номера предложений, отметьте знаком «+» правильные.

Выпишите номера вопросов и рядом запишите буквы правильных ответов.

1. Наука, изучающая возможности использования живых организмов и биологических процессов в производстве, называется:
а) микология; б) биотехнология; в) микробиология.

3. Сборная группа одноклеточных грибов называется:
а) бактерии; б) архебактерии; в) дрожжи; г) слизевики.

4. К хищным грибам относится:
а) пеницилл; б) аспергилл; в)дрожжи; г) артроботрис.

5. Грибы играют важную роль в рециклизации мусора, бытовых отходов и отходов сельского хозяйства:
а) да; б) нет.

6. Первым антибиотиком, полученным при помощи плесневых грибов, был:
а) пенициллин; б) тетрациклин; в) левомицитин; г) стрептомицин.

7. Микроскопические грибы используются при производстве:
а) ферментов, б) антибиотиков; в) органических кислот; г) все ответы верны.

1-й вариант. 1+, 2–, 3–, 4–, 5+, 6+, 7–, 8+, 9–, 10+.

2-й вариант. 1б, 2г, 3в, 4г, 5а, 6а, 7г.

3адание на дом

Изучить записи, подготовиться к зачету по теме «Биотехнология».

 


Читайте:



Эксперименты над людьми блок 731

Эксперименты над людьми блок 731

В одно время на территории сопок Маньчжурии начал работать страшный завод. В качестве «сырья» там использовали живых людей. А «продукция», которая...

Правила поведения в толпе

Правила поведения в толпе

«Незнакомый человек» - Не играй на улице с наступлением темноты. Не рассказывай, что дома хранятся дорогостоящие вещи. По первому требованию...

Блокадный крематорий ленинграда

Блокадный крематорий ленинграда

Про буржуйки и другие мелочиОпять небольшое вступление. Не могу не помянуть рецензию Олега Матисона «как Вы согревались в квартирах вне..., как...

Упражнение Прилагательное или наречие?

Упражнение Прилагательное или наречие?

Большинство наречий оканчивается на –ly , но существуют также некоторые прилагательные, которые тоже оканчиваются на –ly . Примеры: costly –...

feed-image RSS