Реклама

Главная - Геометрия
Смещение химического равновесия. Принцип Лe Шателье. Определение констант равновесия химических реакций и расчет химического равновесия Значения константы равновесия

П р и м е р.

Вычислите константу химического равновесия для обратимой гомогенной реакции, СО + Н 2 О = СО 2 + Н 2 , исходя из того, что равновесие концентрации веществ:

[СО] р = 0,045 моль/л,

[Н 2 О] р = 0,064 моль/л,

[СО 2 ] р = 0,18 моль/л.

Дано:

[СО] р = 0,045 моль/л

[Н 2 О] р = 0,064 моль/л

[СО 2 ] р = 0,18 моль/л

Решение:

Молярное отношение продуктов реакции 1:1, поэтому

[СО 2 ] р = [Н 2 ] р = 0,18 моль/л.

Исходя из выражения (2.1) рассчитываем величину константы химического равновесия:

К х.р = [СО 2 ] р [Н 2 ] р / [СО 2 ] р [Н 2 О] р = 0,18 · 0,18/0,045 · 0,064

Ответ: 11,25.

2. Вычисление равновесных концентраций по исходным концентрациям реагирующих веществ и наоборот

П р и м е р 1.

Обратимая газовая реакция протекает по уравнению:

СО + CI 2 = COCI 2 .

Исходные концентрации реагирующих веществ:

[СО] 0 = 0,03 моль/л;

0 = 0,02 моль/л.

После наступления равновесия концентрация угарного газа стала:

[СО] р = 0,021 моль/л.

Вычислить равновесные концентрации остальных веществ и величину константы химического равновесия.

Дано:

[СО] 0 = 0,03 моль/л

[С1 2 ] 0 = 0,02 моль/л

[СО] р = 0,021 моль/л

P , p , K x . p – ?

Решение:

К моменту равновесия изменение концентрации СО составило:

∆[СО] = [СО] 0 – [СО] р = 0,03 – 0,021 = 0,009 моль/л.

Поскольку молярное отношение веществ, участвующих в реакции 1:1:1, то изменение концентрации всех веществ одинаково:

[С1 2 ] р = [С1 2 ] 0 – ∆[С1 2 ] = 0,02 – 0,009 = 0,011 моль/л,

[СОС1 2 ] р = 0,009 моль/л,

К х·р = [СОС1 2 ] Р / [СО] Р [С1 2 ] р = 0,009/0,021 · 0,011 = 39.

Результаты вычислений внесем в таблицу, где знаки «+» и «–» означают соответственно увеличение или понижение концентрации вещества.

Ответ: [С1 2 ] р = 0,011 моль/л; [СОС1 2 ] р = 0,009 моль/л; К х·р = 39.

П р и м е р 2.

Равновесные концентрации веществ, участвующих в обратимой реакции 2NO + О 2 = 2NО 2 , следующие (моль/л):

Р = 0,056;

[О 2 ] = 0,028;

Дано:

Р = 0,056 моль/л

Р = 0,028 моль/л

Р = 0,044 моль/л

0 , [О 2 ] 0 – ?

Решение:

Начальная концентрация оксида азота (IV) была 0 = 0, а ее изменение к моменту равновесия составляет ∆ = 0,044 моль/л.

Молярное отношение NO и NО 2 в реакции 2:2 (1:1), следовательно, начальная концентрация NO будет:

0 = р + 0,044 = 0,056 + 0,044 = 0,1 моль/л.

Молярное отношение О 2 и NO 2 составляет 1:2, отсюда начальная концентрация О 2 будет:

[О 2 ] 0 = [О 2 ] р + 0,044/2 = 0,028 + 0,022 = 0,05 моль/л.

Результаты вычислений записываем в таблицу

Ответ: 0 = 0,1 моль/л; [О 2 ] 0 = 0,05 моль/л.

П р и м е р 3.

Реакция синтеза аммиака протекает по уравнению ЗН 2 + N 2 = 2NH 3 . Начальные концентрации исходных веществ равны (моль/л): водорода – 0,05; азота – 0,04: константа скорости реакции равна 0,3. Рассчитать: а) начальную скорость реакции; б) скорость реакции, когда концентрация аммиака стала равной 0,02 моль/л.

Дано:

а) [Н 2 ] 0 = 0,05 моль/л

0 = 0,04 моль/л

б) = 0,02 моль/л

Решение:

а) В соответствии с законом действующих масс находим начальную скорость реакции:

υ 0 = k 0 3 0 = 3 · 10 –1 3 = 1,5 · 10 –6 моль/л·с.

б) Исходя из уравнения реакции молярное отношение водорода и аммиака 3:2. Увеличение концентрации аммиака на 0,02 моль/л вызывает уменьшение концентрации водорода на 0,03 моль/л (0,02 – 3/2 = 0,03).

Таким образом, к моменту когда концентрация аммиака выросла на 0,02 моль/л, концентрация водорода уменьшилась до 0,02 моль/л (0,05 – 0,03 = 0,02). Молярное отношение азота и аммиака 1:2. Концентрация азота уменьшится на 0,01 моль (0,02 – 1/2 = = 0,01) и станет равной 0,03 моль/л (0,04 – 0,01 = 0,03). Скорость реакции с уменьшением концентрации реагирующих веществ также понизится:

υ = k 3 = 3 · 10 –1 3 = 7,2 · 10 –8 моль/л·с.

Ответ: а) 1,5 · 10 –6 моль/л·с; б) 7,2 · 10 –8 моль/л·с.

П р и м е р 4.

Реакция протекает по уравнению 2NO + О 2 = 2NO 2 , через некоторое время после начала реакции концентрации всех веществ, участвующих в реакции, стали: = 0,04 моль/л; [О 2 ] = 0,01 моль/л; = 0,02 моль/л. Рассчитать начальные концентрации исходных веществ и начальную скорость реакции, если константа скорости реакции k = 1.

Дано:

0,04 моль/л

[О 2 ] = 0,01 моль/л

0,02 моль/л

0 , 0 , x 0 – ?

Решение:

В соответствии с уравнением реакции молярное отношение NO и NO 2 равно 2:2 (1:1).

Увеличение концентрации продукта реакции NO 2 до 0,02 моль/л вызвало уменьшение концентрации NO на 0,02 моль. Следовательно, начальная концентрация оксида азота (II) была:

0 = +0,02 = 0,04 + 0,02 = 0,06 моль/л.

Молярное отношение О 2 и NO 2 составляет 1:2, поэтому повышение концентрации NO 2 до 0,02 моль вызвало уменьшение концентрации кислорода на 0,01 моль (0,02 · 1/2 = 0,01). В результате начальная концентрация кислорода была:

[О 2 ] 0 = [О 2 ] + 0,01 = 0,01 + 0,01 = 0,02 моль/л.

Начальная скорость реакции

υ 0 = k 0 2 0 = 1 2 = 7,2 · 10 –5 моль/л·с.

Ответ: 0 = 0,06 моль/л; [О 2 ] 0 = 0,02 моль/л;

х 0 = 7,2 · 10 –5 моль/л·с.

K p = ∏ p i ν i {\displaystyle K_{p}=\prod p_{i}^{{\nu }_{i}}}

Например, для реакции окисления монооксида углерода :

2CO + O 2 = 2CO 2

константа равновесия может быть рассчитана по уравнению:

K p = p C O 2 2 p C O 2 ⋅ p O 2 {\displaystyle K_{p}={\frac {p_{CO_{2}}^{2}}{p_{CO}^{2}\cdot p_{O_{2}}}}} K p = K x P Δ n {\displaystyle K_{p}=K_{x}P^{\Delta n}}

где Δn - изменение числа молей веществ в ходе реакции. Видно, что K x зависит от давления. Если число молей продуктов реакции равно числу молей исходных веществ ( Δ n = 0 {\displaystyle \Delta n=0} ), то K p = K x {\displaystyle K_{p}=K_{x}} .

Стандартная константа равновесия

Стандартная константа равновесия реакции в смеси идеальных газов (когда начальные парциальные давления участников реакции равны их значениям в стандартном состоянии = 0,1013 МПа или 1 атм) может быть рассчитана по выражению:

K 0 = ∏ (p i ~) v i {\displaystyle K^{0}=\prod ({\tilde {p_{i}}})^{v_{i}}} где p i ~ {\displaystyle {\tilde {p_{i}}}} - относительные парциальные давления компонентов, p i ~ = p i / p i 0 {\displaystyle {\tilde {p_{i}}}=p_{i}/p_{i}^{0}} .

Стандартная константа равновесия - безразмерная величина. Она связана с K p соотношением:

K p = K 0 (p i 0) Δ n {\displaystyle K_{p}=K^{0}(p_{i}^{0})^{\Delta n}}

Видно, что если p i 0 {\displaystyle p_{i}^{0}} выражены в атмосферах, то (p i 0) Δ n = 1 {\displaystyle (p_{i}^{0})^{\Delta n}=1} и K p = K 0 {\displaystyle K_{p}=K^{0}} .

Для реакции в смеси реальных газов в стандартном начальном состоянии парциальные фугитивности газов принимаются равными их парциальным давлениям f i 0 = p i 0 {\displaystyle f_{i}^{0}=p_{i}^{0}} = 0,1013 МПа или 1 атм. K f связана с K 0 соотношением:

K f = K 0 (γ i p i 0) Δ n {\displaystyle K_{f}=K^{0}(\gamma _{i}p_{i}^{0})^{\Delta n}} где γ i - коэффициент фугитивности i-го реального газа в смеси.

Константа равновесия реакций в гетерогенных системах

FeO т + CO г = Fe т + CO 2г

константа равновесия (при условии, что газовая фаза идеальна) имеет вид:

K p = p C O 2 p C O {\displaystyle K_{p}={\frac {p_{CO_{2}}}{p_{CO}}}}

Термодинамическое описание равновесия

Наряду с обозначением Q для соотношения активностей веществ в произвольный момент реакции t ("коэффициент реакции ")

Q r = { S t } σ { T t } τ { A t } α { B t } β = ∏ a j (t) ν j ∏ a i (t) ν i = ∏ a n (t) ν n {\displaystyle Q_{r}={\frac {\left\{S_{t}\right\}^{\sigma }\left\{T_{t}\right\}^{\tau }}{\left\{A_{t}\right\}^{\alpha }\left\{B_{t}\right\}^{\beta }}}={\frac {\prod a_{j(t)}^{\nu _{j}}}{\prod a_{i(t)}^{\nu _{i}}}}=\prod a_{n(t)}^{\nu _{n}}} (обозначения для приведённой ниже реакции; последнее равенство написано в обозначении, что стехиометрические коэффициент берутся со знаком "+" для продуктов и со знаком "-" для исходных веществ)

в химической термодинамике используется обозначение K eq для такого же по форме соотношения между равновесными активностями веществ

K e q = [ S ] σ [ T ] τ [ A ] α [ B ] β = ∏ a j (t = ∞) ν j ∏ a i (t = ∞) ν i = ∏ a n (t = ∞) ν n {\displaystyle K_{eq}={\frac {[S]^{\sigma }[T]^{\tau }}{[A]^{\alpha }[B]^{\beta }}}={\frac {\prod a_{j(t=\infty)}^{\nu _{j}}}{\prod a_{i(t=\infty)}^{\nu _{i}}}}=\prod a_{n(t=\infty)}^{\nu _{n}}} (то есть соотношения активностей в момент t = ∞ {\displaystyle t=\infty } , в момент равновесия). Далее приведено термодинамическое описание химического равновесия и описана связь K eq со стандартной энергией Гиббса процесса.

В системе, где протекает химическая реакция

α A + β B ⇌ σ S + τ T {\displaystyle \alpha A+\beta B\rightleftharpoons \sigma S+\tau T}

равновесие может быть описано условием

(d G d ξ) T , p = 0 {\displaystyle \left({\frac {dG}{d\xi }}\right)_{T,p}=0} где ξ {\displaystyle \xi } есть химическая переменная

или, то же самое условие равновесия может быть записано с использованием химических потенциалов как

α μ A + β μ B = σ μ S + τ μ T {\displaystyle \alpha \mu _{A}+\beta \mu _{B}=\sigma \mu _{S}+\tau \mu _{T}}

где химические потенциалы

μ A = μ A ⊖ + R T ln ⁡ { A } {\displaystyle \mu _{A}=\mu _{A}^{\ominus }+RT\ln\{A\}} здесь {A} - строго говоря, активность реагента A; при допущениях об идеальных газах можно заменить их на давления, для реальных газов можно заменить на фугитивности, при допущении о том, что раствор подчиняется закону Генри , можно заменить на мольные доли , и при допущении, что раствор подчиняется закону Рауля - на парциальные давления ; для системы в равновесии может быть заменена на равновесную молярную концентрацию или на равновесную активность. Δ r G o = − R T ln ⁡ K e q {\displaystyle \Delta _{r}G^{o}=-RT\ln K_{eq}}

Равновесный состав смеси и направление реакции

Упомянутый выше "коэффициент реакции" Q (другие обозначения, встречающиеся в литературе - Ω {\displaystyle \Omega } или π {\displaystyle \pi } , "произведение реакции")

Q r = ∏ a n (t) ν n {\displaystyle Q_{r}=\prod a_{n(t)}^{\nu _{n}}}

отражает соотношение текущих активностей всех участников реакции и может быть использован для определения направления реакции в момент, для которого известен Q

Если в момент t коэффициент Q > K, то текущие активности продуктов больше равновесных, и значит они должны уменьшиться к тому моменту, когда установится равновесие, то есть в данный момент протекает обратная реакция; Если Q = K, то равновесное состояние достигнуто и скорости прямой и обратной реакций равны; Если Q < K, то v 1 > v − 1 {\displaystyle v_{1}>v_{-1}}

С использованием величины Q r {\displaystyle Q_{r}} записывается уравнение изотермы химической реакции

Δ G p , T = R T ln ⁡ Q r − R T ln ⁡ K e q = R T ln ⁡ Q r K e q = ∑ ν i μ i {\displaystyle \Delta G_{p,T}=RT\ln Q_{r}-RT\ln K_{eq}=RT\ln {\frac {Q_{r}}{K_{eq}}}=\sum \nu _{i}\mu _{i}}

Где ν {\displaystyle \nu } - стехиометрические коэффициенты (для продуктов - со знаком "+", для исходных веществ - со знаком "-"; так же, как и в выражениях для Q и K), а μ {\displaystyle \mu } - химические потенциалы а стандартная энергия Гиббса и стандартная константа суть

Δ G p , T o = − R T ln ⁡ K e q o = ∑ ν i μ i o {\displaystyle \Delta G_{p,T}^{o}=-RT\ln K_{eq}^{o}=\sum \nu _{i}\mu _{i}^{o}}

Где μ o {\displaystyle \mu ^{o}} - стандартные химические потенциалы

Уравнение изотермы показывает, как величина Q связана с изменением свободной энергии реакции:

При Q > K {\displaystyle Q>K} для прямой реакции Δ G > 0 {\displaystyle \Delta G>0} , то есть ∑ ν j μ j {\displaystyle \sum \nu _{j}\mu _{j}} для продуктов прямой реакции больше, чем для исходных веществ - это означает, что прямая реакция запрещена (значит, не запрещена обратная); при Q = K {\displaystyle Q=K} для прямой реакции Δ G = 0 {\displaystyle \Delta G=0} , то есть реакция достигла равновесного состояния; при Q < K {\displaystyle Q для прямой реакции Δ G < 0 {\displaystyle \Delta G<0} , то есть эта самопроизвольное протекание этой реакции разрешено

Величина по определению имеет смысл только для состояния равновесия, то есть для состояния с v 1 v − 1 = 1 {\displaystyle {\frac {v_{1}}{v_{-1}}}=1} и Δ G r = 0 {\displaystyle \Delta G_{r}=0} . Величина K e q {\displaystyle K_{eq}} ничего не говорит о скоростях реакций, но она описывает состав системы в состоянии равновесия.

Если K >> 1, то в системе преобладают продукты (прямой) реакции Если K << 1, то в системе преобладают исходные вещества (продукты обратной реакции)

Стандартные состояния

Стандартная энергия Гиббса реакции в газовой смеси - энергия Гиббса реакции при стандартных парциальных давлениях всех компонентов, равных 0,1013 МПа (1 атм). Стандартная энергия Гиббса реакции в растворе - энергия Гиббса при стандартном состоянии раствора, за которое принимают гипотетический раствор со свойствами предельно разбавленного раствора , но с концентрацией всех реагентов, равной единице. Для чистого вещества и жидкости стандартная энергия Гиббса совпадает с энергией Гиббса образования этих веществ. Величина стандартной энергии Гиббса реакции может быть использована для приближенной оценки термодинамической возможности протекания реакции в данном направлении, если начальные условия не сильно отличаются от стандартных. Кроме того, сравнивая величины стандартной энергии Гиббса нескольких реакций, можно выбрать наиболее предпочтительные, для которых имеет наибольшую по модулю отрицательную величину.

Кинетическое описание

Для обратимой химической реакции константа равновесия K eq может быть выражена через константы скорости прямых и обратных реакций. Рассмотрим элементарную обратимую химическую реакцию первого порядка

A ⇄ B {\displaystyle \mathrm {A} \rightleftarrows \mathrm {B} }

По определению, равновесие задаётся условием v 1 = v − 1 {\displaystyle v_{1}=v_{-1}} , то есть равенством скоростей прямой и обратной реакций.

В соответствии с законом действующих масс v = k ∏ a j n j {\displaystyle v=k{\prod }{a_{j}}^{n_{j}}}

Где k - константа скорости соответствующей реакции, а a j n j {\displaystyle {a_{j}}^{n_{j}}} - равновесные активности реагентов этой реакции, возведённые в степени, равные их стехиометрическим коэффициентам

можно записать условие равновесия в виде

1 = v 1 v − 1 = k 1 ∏ a A n A k − 1 ∏ a B n B {\displaystyle 1={\frac {v_{1}}{v_{-1}}}={\frac {k_{1}{\prod }{a_{A}}^{n_{A}}}{k_{-1}{\prod }{a_{B}}^{n_{B}}}}} 1 = k 1 k − 1 ⋅ ∏ a A n A ∏ a B n B = k 1 k − 1 ⋅ (K e q) − 1 {\displaystyle 1={\frac {k_{1}}{k_{-1}}}\cdot {\frac {\prod {a_{A}}^{n_{A}}}{\prod {a_{B}}^{n_{B}}}}={\frac {k_{1}}{k_{-1}}}\cdot \left(K_{eq}\right)^{-1}}

(см. термодинамическое описание константы равновесия), что возможно только если

K e q = k 1 k − 1 {\displaystyle K_{eq}={\frac {k_{1}}{k_{-1}}}}

Это важное соотношение даёт одну из «точек соприкосновения» химической кинетики и химической термодинамики .

Множественные равновесия

В случае, когда в системе устанавливается сразу несколько равновесий (то есть одновременного или последовательного протекает нескольких процессов), каждый из них может быть охарактеризован своей константой равновесия, из которых можно выразить общую константу равновесия для всей совокупности процессов. Можно рассмотреть такую ситуацию на примере ступенчатой диссоциации двухосновной кислоты H 2 A. Водный раствор её будет содержать частицы (сольватированные) H + , H 2 A, HA - and A 2- . Процесс диссоциации протекает в две ступени:

H 2 A ⇌ H A − + H + : K 1 = [ H A − ] [ H + ] [ H 2 A ] {\displaystyle H_{2}A\rightleftharpoons HA^{-}+H^{+}:K_{1}={\frac {}{}}} H A − ⇌ A 2 − + H + : K 2 = [ A 2 − ] [ H + ] [ H A − ] {\displaystyle HA^{-}\rightleftharpoons A^{2-}+H^{+}:K_{2}={\frac {}{}}}

K 1 и K 2 - константы первой и второй ступеней диссоциации соответственно. Из них можно выразить "полную" константу равновесия, для процесса полной диссоциации :

H 2 A ⇌ A 2 − + 2 H + : K 1 + 2 = [ A 2 − ] [ H + ] 2 [ H 2 A ] = K 1 K 2 {\displaystyle H_{2}A\rightleftharpoons A^{2-}+2H^{+}:K_{1+2}={\frac {^{2}}{}}=K_{1}K_{2}}

Другой пример множественного равновесия - анализ системы осадок /растворимое комплексное соединение . Допустим, имеется равновесие

A g I 2 − (a q) ⇌ A g I (s o l i d) + I − (a q) {\displaystyle AgI_{2}^{-}(aq)\rightleftharpoons AgI(solid)+I^{-}(aq)}

Реакцию можно представить в виде двух последовательных равновесий - равновесия разложения комплексного иона на составляющие его ионы, которое характеризуется "константой нестойкости" (величина, обратная "константе устойчивости" β):

A g I 2 − (a q) ⇌ A g + (a q) + 2 I − (a q) : K 1 = α A g + α I − 2 α A g I 2 − = β − 1 {\displaystyle AgI_{2}^{-}(aq)\rightleftharpoons Ag^{+}(aq)+2I^{-}(aq):K_{1}={\frac {\alpha _{Ag^{+}}\alpha _{I^{-}}^{2}}{\alpha _{AgI_{2}^{-}}}}=\beta ^{-1}}

и равновесия перехода ионов из объёма растворителя в кристаллическую решётку

A g + (a q) + I − (a q) ⇌ A g I (s o l i d) : K 2 = α A g I α A g + α I − {\displaystyle Ag^{+}(aq)+I^{-}(aq)\rightleftharpoons AgI(solid):K_{2}={\frac {\alpha _{AgI}}{\alpha _{Ag^{+}}\alpha _{I^{-}}}}}

с учётом того, что для твёрдых веществ активность принимается равной 1 , а в разбавленных растворах активности могут быть заменены на молярные концентрации, получаем

K 2 = α A g I α A g + α I − = 1 [ A g + ] [ I − ] = 1 K s p {\displaystyle K_{2}={\frac {\alpha _{AgI}}{\alpha _{Ag^{+}}\alpha _{I^{-}}}}={\frac {1}{}}={\frac {1}{K_{sp}}}}

где K s p {\displaystyle K_{sp}} - произведение растворимости

Тогда суммарное равновесие будет описываться константой

A g I 2 − (a q) ⇌ A g I (s o l i d) + I − (a q) : K = α A g I α I − α A g I 2 − = K 1 ⋅ K 2 = 1 β ⋅ K s p {\displaystyle AgI_{2}^{-}(aq)\rightleftharpoons AgI(solid)+I^{-}(aq):K={\frac {\alpha _{AgI}\alpha _{I^{-}}}{\alpha _{AgI_{2}^{-}}}}=K_{1}\cdot K_{2}={\frac {1}{\beta \cdot K_{sp}}}}

И значение этой константы будет условием преобладания в равновесной смеси комплексного соединения или твёрдой соли: как и выше, если K << 1, то в равновесной смеси большая часть ионов связана в комплексное соединение, если K >> 1, то в равновесном состоянии в системе большая часть ионов связана в кристаллической фазе. реакции, протекающей, соответственно, при постоянном давлении или при постоянном объёме. Если Δ H > 0 {\displaystyle \Delta H>0} (тепловой эффект положителен, реакция эндотермическая), то температурный коэффициент константы равновесия d ln ⁡ K p d T {\displaystyle {\frac {d\ln K_{p}}{dT}}} тоже положителен, то есть с ростом температуры константа равновесия эндотермической реакции увеличивается, равновесие сдвигается вправо (что вполне согласуется с принципом Ле Шателье).

Методы расчета константы равновесия

Расчётные методы определения константы равновесия реакции обычно сводятся к вычислению тем или иным способом стандартного изменения энергии Гиббса в ходе реакции (ΔG 0 ), а затем использованию формулы:

Δ G 0 = − R T ln ⁡ K 0 {\displaystyle \Delta G^{0}=-RT\ln K^{0}} , где R {\displaystyle R} - универсальная газовая постоянная .

При этом следует помнить, что энергия Гиббса - функция состояния системы, то есть она не зависит от пути процесса, от механизма реакции, а определяется лишь начальным и конечным состояниями системы. Следовательно, если непосредственное определение или расчёт ΔG 0 для некоторой реакции по каким-либо причинам затруднены, можно подобрать такие промежуточные реакции, для которых ΔG 0 известно или может быть легко определено, и суммирование которых даст рассматриваемую реакцию (см. Закон Гесса). В частности, в качестве таких промежуточных реакций часто используют реакции образования соединений из элементов.

Энтропийный расчёт изменения энергии Гиббса и константы равновесия реакции

Энтропийный метод расчёта ΔG реакции является одним из самых распространённых и удобных . Он основан на соотношении:

Δ G T = Δ H T − T Δ S T {\displaystyle \Delta G_{T}=\Delta H_{T}-T\Delta S_{T}}

или, соответственно, для стандартного изменения энергии Гиббса:

Δ G T 0 = Δ H T 0 − T Δ S T 0 {\displaystyle \Delta G_{T}^{0}=\Delta H_{T}^{0}-T\Delta S_{T}^{0}}

Здесь ΔH 0 при постоянных давлении и температуре равно тепловому эффекту реакции, методы расчёта и экспериментального определения которого известны - см., например, уравнение Кирхгофа :

Δ H T 0 = Δ H 298 0 + ∫ 298 T Δ C p d T {\displaystyle \Delta H_{T}^{0}=\Delta H_{298}^{0}+\int _{298}^{T}\Delta C_{p}dT}

Необходимо получить изменение энтропии в ходе реакции. Эта задача может быть решена несколькими способами, например:

  • По термическим данным - с опорой на тепловую теорему Нернста и с использованием сведений о температурной зависимости теплоёмкости участников реакции. Например, для веществ, при нормальных условиях находящихся в твёрдом состоянии:
S 298 = S 0 + ∫ 0 T C p (s o l) T d T {\displaystyle S_{298}=S_{0}+\int _{0}^{T}{\frac {C_{p(sol)}}{T}}dT} где S 0 = 0 (постулат Планка) и тогда, соответственно, S 298 = ∫ 0 T C p (s o l) T d T {\displaystyle S_{298}=\int _{0}^{T}{\frac {C_{p(sol)}}{T}}dT} . (здесь индекс sol - от англ. solid, "твердый"). При некоторой заданной температуре T: S T 0 = S 298 0 + ∫ 298 T C p (s o l) T d T {\displaystyle S_{T}^{0}=S_{298}^{0}+\int _{298}^{T}{\frac {C_{p(sol)}}{T}}dT} Для жидких или газообразных при нормальной температуре веществ, или, в более общем случае, для веществ, в интервале температур от 0 (или 298) и до T претерпевающих фазовый переход , следует учитывать изменение энтропии, связанное с этим фазовым переходом. S 298 0 = A ln ⁡ M + B {\displaystyle S_{298}^{0}=A\ln M+B} где A и B - табличные константы, зависящие от типа рассматриваемого соединения, M - молекулярная масса.

Итак, если известны Δ H 298 0 {\displaystyle \Delta H_{298}^{0}} , Δ S 298 0 {\displaystyle \Delta S_{298}^{0}} и температурные зависимости теплоёмкости, Δ G T 0 {\displaystyle \Delta G_{T}^{0}} может быть рассчитано по формуле:

Δ G T 0 = Δ H 298 0 − T Δ S 298 0 + ∫ 298 T Δ C p d T − T ∫ 298 T Δ C p d T T {\displaystyle \Delta G_{T}^{0}=\Delta H_{298}^{0}-T\Delta S_{298}^{0}+\int _{298}^{T}\Delta C_{p}dT-T\int _{298}^{T}\Delta C_{p}{\frac {dT}{T}}}

Несколько упрощённый вариант этой формулы получают, считая сумму теплоёмкостей веществ не зависящей от температуры и равной сумме теплоёмкостей при 298 K:

Δ G T 0 = Δ H 298 0 − T Δ S 298 0 + Δ C p 298 (T − 298) − T ln ⁡ T 298 {\displaystyle \Delta G_{T}^{0}=\Delta H_{298}^{0}-T\Delta S_{298}^{0}+\Delta C_{p~298}(T-298)-T\ln {\frac {T}{298}}}

И еще более упрощённый расчёт проводят, приравнивая сумму теплоёмкостей к нулю:

Δ G T 0 = Δ H 298 0 − T Δ S 298 0 {\displaystyle \Delta G_{T}^{0}=\Delta H_{298}^{0}-T\Delta S_{298}^{0}}

Переход от Δ G T 0 {\displaystyle \Delta G_{T}^{0}} к константе равновесия осуществляется по приведённой выше формуле.

Пример 1 . Вычислить изменение энергии Гиббса ΔG в реакции димеризации диоксида азота 2NО 2(г) = N 2 O 4(г) при стандартной температуре 298 К, 273 К и 373 К. Сделать вывод о направлении процесса. Определить константы равновесия реакции димеризации диоксида азота при выше указанных температурах. Определить температуру, при которой Δ G = 0. Сделайте вывод о направлении этой реакции выше и ниже этой температуры. Термодинамические характеристики компонентов:

ΔΗ° 298 S o 298

В-во кДж/моль Дж/моль*K

NO 2 (г) 33,3 240,2

N 2 O 4(г) 9,6 303,8

Решение. Для обратимого процесса:

aA (г) + bB (г) ⇄ сС (г) + dD (г)

выражение для константы равновесия K р будет
K р =(P c C *P d D)/(P a A *P b B)

где P A , P B , P C , P D - равновесные парциальные давления газообразных компонентов А,В,С,D a, b, c, d - стехиометрические коэффициенты.

Для процесса aA (ж) +bB) ⇄ сC (ж) +dD (ж) выражение для константы равновесия
K c = (C c C *C d D)/(C a A *C b B)

где C A , C B , C C , C D - равновесные концентрации веществ А,В,С,D a, b, c, d - стехиометрические коэффициенты.

По формуле (1.4.1) для системы 2NO 2 ⇄ N 2 O 4 имеем

K р =P N 2 O 4 /P 2 NO 2
При стандартной температуре 298 K изменение энтальпии (ΔH o реакции) определим по формуле (1.2.2)

ΔH o реакции = ΔΗ° 298 N 2 O 4 - 2ΔΗ° 298 NO 2 = 9,6-2*33,5 = -57400 Дж.

Изменение энтропии (1.3.5)

ΔS o реакции = S° 298 N2O4 - 2S° 298 NO2 =303,8-2* (240 ,2)=-176 Дж/моль*К

Пользуясь принципом Ле-Шателье, который говорит о том, что при изменении условий, при которых обратимая реакция находится в состоянии равновесия, равновесие сместится в сторонy процесса ослабевающего изменения, предскажем направление смещения равновесия. Значение ΔΗ о отрицательно, следовательно реакция образования экзотермическая (идет c выделением тепла) и при понижении температуры равновесие должно смещаться вправо, при повышении температуры - влево. Кроме того, по фopмyлe (1.3.6), зная, что ΔH 0 характеризует невозможность самопроизвольного процесса (см. пример 4 разд. 1.3). Следовательно, в нашем случае при понижении температуры будет предпочтительнее образование N 2 О 4 (равновесие смещается вправо), а при увеличении температуры предпочтительнее образование NO 2 (равновесие смещается влево). Качественные выводы подтвердим расчетами

ΔG o 273 ; ΔG o 298 ; ΔG o 373 и K 273 ; K 298 ; K 373

Значение энергии Гиббса для заданных температур рассчитаем по формуле (1.3.7):

ΔG o 298 =ΔH o -TΔS o =-57400-298*(-176)=-4952Дж.,

ΔG o 273 =-57400-273*(-176)=-9352Дж:

ΔG o 373 =-57400-373*(-176)= 7129 Дж.

Отрицательное значение ΔG o 298 говорит о смещении равновесия реакции вправо, а более высокое отрицательное значение ΔG o 273 свидетельствует о том, что при снижении температуры от (298 до 273 К) равновесие смещается вправо.

Положительное значение ΔG o 373 указывает на изменение направления самопроизвольного процесса. При этой температуре предпочтительнее становится обратная реакция (смещение равновесия влево).

Константы равновесия К p и энергию Гиббса ΔG o связывает формула

где К p - константа равновесия процесса; R - газовая постоянная; T - абсолютная температура. По формуле (1.4.3) имеем:

lnK 273 =- ΔG o 273 /RT=9352/8,31*273=4,12

lnK 298 = -ΔG o 298 /RT=4952/8,31*298=2

lnK 373 = -ΔG o 373 /RT=-7129/8,31*298=-2,3

значение К 298 и K 273 > 1 показывает на смещение равновесия вправо (сравни с (1.4.1)) и тем больше, чем выше значение константы равновесия. K 373 < 1, говорит ο смещении равновесия в системе влево (сравни с (1.4.1)).

Условию ΔG o реакции =0 отвечает константа равновесия,

равная единице.

Рассчитаем температуру Т, соответствующую этой константе по формуле (1.3.7):

ΔG°=ΔΗ°-TΔS o ; O=ΔH o -TΔS o ;

T Δ G =0 =ΔΗ°/ΔS°=57400/176=326,19 K

Вывод. При температуре 326,19 K прямая и обратная реакции протекают c одинаковой вероятностью, K р =1. С понижением температуры равновесие будет смещаться вправо с повышением влево.

Пример 2 . Константа равновесия К р реакции синтеза NH 3 по реакции N2+3 H2==2NH 3 при 623 K равна 2,32*10 -13 . Вычислить К с при той же температуре.

Решение. Связь К р и К с осуществляется по формуле

K p = K c (RT) Δ n , (1.4.4)

Δn= n 2 - n 1 =2-4= -2, где n 1 и n 2 количество молей peaгентов и продуктов. Следовательно,

K c =K p /(RT) Δ n =0,624*10 -5

Ответ . К = 0,624*10 -5 .

Пример 2. Упругость диссоциации карбоната кальция при 1154 К равна 80380 Па, а при 1164 K - 91177 Па. Рассчитать, при какой температуре упругость диссоциации карбоната кальция будет равна 101325 Па.

Решение. Реакция диссоциации CaCO 3(кр) ⇄ CaO (кр) +СО 2(г)

Отсюда по (1.4.1)

K p =P CO 2
Следовательно, при каждой температуре (Т 1 - 1154 K; Τ =1164 К* Τ = X) константы равновесия будут соответствовать давлению:

K T 1 = 80380; K T 2 = 91177; K T 3 = 101325.

Зависимость константы равновесия от температуры показы­вает уравнение Аррениуса

dlnK p /dT= ΔΗ/RT 2 (1.4.5)

где К p - константа равновесия; Τ - температура, К; ΔΗ - теп­ловой эффект реакции; R - газовая постоянная.

Интегрируя уравнение (1.4.5) в интервале температур Т 1 -Т 2 при Δ H= соnst получим
lnK T 1 /K T 2 = ΔΗ/R(1/T 1 -1/T 2),

Где K T 1 и K T 2 – константы равновесия при T 1 и T 2 .

Определим сначала ΔΗ (по 1.4.6)

ΔΗ=ln(91177*8,31*1154*1164/80380*10)=140500 Дж/моль.

ln(101325/91177)=140500/8,31(1/1164-1/T 3)

T 3 =1172 K
Ответ. При Т=1172К упругость диссоциации карбоната кальция будет равна 101325 Па.

Задачи

56. Константа диссоциации уксусной кислоты при 298 К равна 1,75*10 -5 . Чему равно изменение энергии Гиббса диссо­циации уксусной кислоты?

57. Найти значение энергии Гиббса (ΔG o 298) и константы равновесия K 298 для реакции BaSО 4(кр) → Ba 2+ (р) + SО 2- 4(p) .

Для расчета использовать следующие данные:

Вещество S о 298 Дж/моль*К ΔH o 298 кДж/моль 2 ^ 2^

BaSO 4(кр) 132,4 -1447,39

Ba 2+ (р) 9,64 -533,83

SO 2- 4 (р) 18,44 -904,2.

58. Найти константу равновесия при 473 К для реакции гидратации этилена

С 2 Н 4(г) + H 2 O (г) =С 2 Н 5 ОН (г) .
Свойства реагентов взять в табл. 3. Зависимостью ΔS и ΔH от температуры пренебречь.

59. Считая, что ΔH o 298 и ΔS о 298 реакции 4HCl+O 2 ⇄ 2Н 2 О + 2Сl 2 не зависят от температуры, найти температуру, при которой

К р =1, а ΔG o = О.

60. Пользуясь табличными данными, вычислить константы равновесия следующих реакций при 298 К и при 1000 К:

а) Н 2 О (г) + СО ⇄ СО 2 + Н 2

б) СО 2 + С (гр) ⇄ 2СО;

c) N 2 + 3H 2 ⇄ 2NH 3 .
Изменениями ΔH o и S о от температуры пренебречь.

61. Для некоторой самопроизвольно протекающей реакции Δ S < О. Как будет изменяться константа равновесия с повышением температуры: а) увеличиваться, б) уменьшаться, в) по данным задачи нельзя определить.

62. Не пользуясь вычислениями, установить знак ΔS o сле­дующих процессов:

а) 2NH 3(г) ⇄ N 2(г) + H 2(г) ;

б) CO 2(кр) ⇄ CO 2(г) ;

в) 2NO (г) + O 2 (г) = 2NO 2(г) ;

г) 2Н 2 S (г) + 3O 2 = 2H 2 O (ж) + 2SO 2(г) ;

д) 2СН 3 ОН (г) + 3О 2(г) = 4H 2 O (г) + 2СО 2(г) .

63. В каком из следующих случаев реакция возможна при любых температурах: а) ΔН°< 0, ΔS°> 0; б) Δ Н°<0, ΔS°<0; в) Δ Н°>0, ΔS°> 0 ?

64. В каком из следующих случаев реакция неосуществима при любых температурах: а) ΔН°> 0, ΔS°> 0; б) Δ Н°>0, ΔS°<0; в) Δ Н°<0, ΔS°<0 ?

65. Если ΔΗ°<0 и ΔS°<0 , в каком из случаев реакция может протекать самопроизвольно:
а)| ΔН°| > |TΔS°|; б)| ΔН°| > |TΔS°| ?

66. Какими воздействиями на систему можно сместить равновесие систем:

а) N 2(г) + 3Н 2(г) ⇄ 2NH 3(г) ;

б) 4Fe (кр) + 3О 2(г) ⇄ 2Fe 2 O 3(кр) ;

в) SO 2 (г) + О 2(г) ⇄ 2SO 3 (г) .

67. В каком направлении произойдет смещение равновесия при повышении температуры в системах:

1) СОCl 2 ⇄ CO +Cl 2 ; ΔН°=113 кДж;

2) 2СО ⇄ СО 2 + С; ΔН°=-171 кДж;

3) 2SO 3 ⇄ 2SO 2 + O 2 ; ΔН°=192 кДж.

68. В каком направлении сместится равновесие при повыше­нии давления в системах:

1) Н 2(г) + S (кр) ⇄ Н 2 S (г) ;

2) 2CO (г) ⇄ СО 2(г) + С (гр) ;

3) 4HCl (г) +О 2(г) ⇄ 2Н 2 О (г) + 2Cl 2(г) .

69. Как повлияет на равновесие следующих реакций:

СаСО 3(кр) ⇄ СаО (кр) + СО 2(г) ; ΔН°=178 кДж;

2СО (г) + О 2(г) ⇄ 2СО 2 ; ΔН°=-566 кДж;

N 2(г) + О 2(г) ⇄ 2NO (г) ; ΔН°=180 кДж.

а) повышение температуры,

б) повышение давления?

70. Используя справочные данные, найти приближенное зна­чение температуры, при которой константа равновесия реакции образования водяного газа

С (гр) + Н 2 О (г) ⇄ СО (г) + Н 2(г)
равна 1. Зависимостью ΔH o и S о от температуры пренебречь.

71. Константа равновесия К р реакции СО+Сl 2 ⇄ СОCl 2 при 600 о С равна 1,67*10 -6 . Вычислять К с реакции при данной температуре.

72. Упругость диссоциации карбоната магния при 1000 К равна 42189 Па, а при 1020 К - 80313 Па. Определить тепловой эффект реакции MgCО 3 ⇄ МgО+СO 2 и температуру, при ко­торой упругость диссоциации карбоната магния станет равной 1 Па.

Выведем константу равновесия для обратимых химических реакций (в общем виде)

· скорость обратной реакции:

Переносим постоянные величины (константы скорости) в левую часть равенства, а переменные (концентрации) – в правую часть равенства, т.е. записываем данное равенство в виде пропорции:

В выражение константы входят равновесные концентрации веществ, взятые в степенях, равных коэффициентам перед веществом в уравнении реакции.

Константа равновесия отражает глубину протекания процесса. Чем больше величина константы равновесия, тем выше концентрация продуктов реакции в момент равновесия, т.е. тем полнее протекает реакция.

Константа равновесия зависит от природы реагирующих веществ, но не зависит от присутствия катализатора, так как он в равной степени ускоряет как прямую, так и обратную реакции. Влияние других факторов (концентрации веществ, давления газов и температуры) на величину константы равновесия мы разберем ниже на конкретных примерах

Рассмотрим вывод выражения константы равновесия на конкретных примерах.

Пример 2. для реакции: N 2(г) +3H 2(г) Û 2NH 3(г)

V пр = k 1 3 ; V обр. = k 2 2 . Если V пр = V обр. , то k 1 [ H 2 ] 3 = k 2 2 ,

.

Если в реакции участвуют твердые вещества (гетерогенная система), то концентрация их не входит в выражение скорости реакции (т.к. остается постоянной в единице поверхности в единицу времени), а следовательно - константы равновесия.

Пример 3. для реакции: С (тв.) + О 2 (г) Û СО 2(г) константа химического равновесия будет равна .

Пример 4. В обратимой химической реакции А + 2В Û С равновесие наступило при следующих равновесных концентрациях: [А] = 0,6 моль/л; [В] = 1,2 моль/л; [С] = 2,16 моль/л. Определить константу равновесия и исходные концентрации вещества А и В .

Химическим равновесием называется такое состояние обратимой химической реакции

aA + b B = c C + d D,

при котором с течением времени не происходит изменения концентраций реагирующих веществ в реакционной смеси. Состояние химического равновесия характеризуется константой химического равновесия :

где C i – концентрации компонентов в равновесной идеальной смеси.

Константа равновесия может быть выражена также через равновесные мольные доли X i компонентов:

Для реакций, протекающих в газовой фазе, константу равновесия удобно выражать через равновесные парциальные давления P i компонентов:

Для идеальных газов P i = C i RT и P i = X i P , где P – общее давление, поэтому K P , K C и K X связаны следующим соотношением:

K P = K C (RT) c+d–a–b = K X P c+d–a–b . (9.4)

Константа равновесия связана с r G o химической реакции:

(9.5)

(9.6)

Изменение r G или r F в химической реакции при заданных (не обязательно равновесных) парциальных давлениях P i или концентрациях C i компонентов можно рассчитать по уравнению изотермы химической реакции (изотермы Вант-Гоффа ):

. (9.7)

. (9.8)

Согласно принципу Ле Шателье , если на систему, находящуюся в равновесии, оказать внешнее воздействие, то равновесие сместится так, чтобы уменьшить эффект внешнего воздействия. Так, повышение давления сдвигает равновесие в сторону уменьшения количества молекул газа. Добавление в равновесную смесь какого-либо компонента реакции сдвигает равновесие в сторону уменьшения количества этого компонента. Повышение (или понижение) температуры сдвигает равновесие в сторону реакции, протекающей с поглощением (выделением) теплоты.

Количественно зависимость константы равновесия от температуры описывается уравнением изобары химической реакции (изобары Вант-Гоффа )

(9.9)

и изохоры химической реакции (изохоры Вант-Гоффа )

. (9.10)

Интегрирование уравнения (9.9) в предположении, что r H реакции не зависит от температуры (что справедливо в узких интервалах температур), дает:

(9.11)

(9.12)

где C – константа интегрирования. Таким образом, зависимость ln K P от 1 должна быть линейной, а наклон прямой равен – r H /R .

Интегрирование в пределах K 1 , K 2 , и T 1, T 2 дает:

(9.13)

(9.14)

По этому уравнению, зная константы равновесия при двух разных температурах, можно рассчитать r H реакции. Соответственно, зная r H реакции и константу равновесия при одной температуре, можно рассчитать константу равновесия при другой температуре.

ПРИМЕРЫ

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K. f G o для CO(г) и CH 3 OH(г) при 500 К равны –155.41 кДж. моль –1 и –134.20 кДж. моль –1 соответственно.

Решение. G o реакции:

r G o = f G o (CH 3 OH) – f G o (CO) = –134.20 – (–155.41) = 21.21 кДж. моль –1 .

= 6.09 10 –3 .

Пример 9-2. Константа равновесия реакции

равна K P = 1.64 10 –4 при 400 o C. Какое общее давление необходимо приложить к эквимолярной смеси N 2 и H 2 , чтобы 10% N 2 превратилось в NH 3 ? Газы считать идеальными.

Решение. Пусть прореагировало моль N 2 . Тогда

N 2 (г) + 3H 2 (г) = 2NH 3 (г)
Исходное количество 1 1
Равновесное количество 1– 1–3 2 (Всего: 2–2)
Равновесная мольная доля:

Следовательно, K X = и K P = K X . P –2 = .

Подставляя = 0.1 в полученную формулу, имеем

1.64 10 –4 =, откуда P = 51.2 атм.

Пример 9-3. Константа равновесия реакции

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K равна K P = 6.09 10 –3 . Реакционная смесь, состоящая из 1 моль CO, 2 моль H 2 и 1 моль инертного газа (N 2) нагрета до 500 K и общего давления 100 атм. Рассчитать состав равновесной смеси.

Решение. Пусть прореагировало моль CO. Тогда

CO(г) + 2H 2 (г) = CH 3 OH(г)
Исходное количество: 1 2 0
Равновесное количество: 1– 2–2
Всего в равновесной смеси: 3–2 моль компонентов + 1 моль N 2 = 4–2 моль
Равновесная мольная доля

Следовательно, K X = и K P = K X . P –2 = .

Таким образом, 6.09 10 –3 = .

Решая это уравнение, получаем = 0.732. Соответственно, мольные доли веществ в равновесной смеси равны: = 0.288, = 0.106, = 0.212 и = 0.394.

Пример 9-4. Для реакции

N 2 (г) + 3H 2 (г) = 2NH 3 (г)

при 298 К K P = 6.0 10 5 , а f H o (NH 3) = –46.1 кДж. моль –1 . Оценить значение константы равновесия при 500 К.

Решение. Стандартная мольная энтальпия реакции равна

r H o = 2 f H o (NH 3) = –92.2 кДж. моль –1 .

Согласно уравнению (9.14), =

Ln (6.0 10 5) + = –1.73, откуда K 2 = 0.18.

Отметим, что константа равновесия экзотермической реакции уменьшается с ростом температуры, что соответствует принципу Ле Шателье.

ЗАДАЧИ

  1. При 1273 К и общем давлении 30 атм в равновесной смеси
  2. CO 2 (г) + C(тв) = 2CO(г)

    содержится 17% (по объему) CO 2 . Сколько процентов CO 2 будет содержаться в газе при общем давлении 20 атм? При каком давлении в газе будет содержаться 25% CO 2 ?

  3. При 2000 o C и общем давлении 1 атм 2% воды диссоциировано на водород и кислород. Рассчитать константу равновесия реакции
  4. H 2 O(г) = H 2 (г) + 1/2O 2 (г) при этих условиях.

  5. Константа равновесия реакции
  6. CO(г) + H 2 O(г) = CO 2 (г) + H 2 (г)

    при 500 o C равна K p = 5.5. Смесь, состоящая из 1 моль CO и 5 моль H 2 O, нагрели до этой температуры. Рассчитать мольную долю H 2 O в равновесной смеси.

  7. Константа равновесия реакции
  8. N 2 O 4 (г) = 2NO 2 (г)

    при 25 o C равна K p = 0.143. Рассчитать давление, которое установится в сосуде объемом 1 л, в который поместили 1 г N 2 O 4 при этой температуре.

  9. Сосуд объемом 3 л, содержащий 1.79 10 –2 моль I 2 , нагрели до 973 K. Давление в сосуде при равновесии оказалось равно 0.49 атм. Считая газы идеальными, рассчитать константу равновесия при 973 K для реакции
  10. I 2 (г) = 2I (г).

  11. Для реакции
  12. при 250 o C r G o = –2508 Дж. моль –1 . При каком общем давлении степень превращения PCl 5 в PCl 3 и Cl 2 при 250 o C составит 30%?

  13. Для реакции
  14. 2HI(г) = H 2 (г) + I 2 (г)

    константа равновесия K P = 1.83 10 –2 при 698.6 К. Сколько граммов HI образуется при нагревании до этой температуры 10 г I 2 и 0.2 г H 2 в трехлитровом сосуде? Чему равны парциальные давления H 2 , I 2 и HI?

  15. Сосуд объемом 1 л, содержащий 0.341 моль PCl 5 и 0.233 моль N 2 , нагрели до 250 o C. Общее давление в сосуде при равновесии оказалось равно 29.33 атм. Считая все газы идеальными, рассчитать константу равновесия при 250 o C для протекающей в сосуде реакции
  16. PCl 5 (г) = PCl 3 (г) + Cl 2 (г)

  17. Константа равновесия реакции
  18. CO(г) + 2H 2 (г) = CH 3 OH(г)

    при 500 K равна K P = 6.09 10 –3 . Рассчитать общее давление, необходимое для получения метанола с 90% выходом, если CO и H 2 взяты в соотношении 1: 2.

  19. При 25 o C f G o (NH 3) = –16.5 кДж. моль –1 . Рассчитать r G реакции образования NH 3 при парциальных давлениях N 2 , H 2 и NH 3 , равных 3 атм, 1 атм и 4 атм соответственно. В какую сторону реакция будет идти самопроизвольно при этих условиях?
  20. Экзотермическая реакция
  21. CO(г) + 2H 2 (г) = CH 3 OH(г)

    находится в равновесии при 500 K и 10 бар. Если газы идеальные, как повлияют на выход метанола следующие факторы: а) повышение T ; б) повышение P ; в) добавление инертного газа при V = const; г) добавление инертного газа при P = const; д) добавление H 2 при P = const?

  22. Константа равновесия газофазной реакции изомеризации борнеола (C 10 H 17 OH) в изоборнеол равна 0.106 при 503 K. Смесь 7.5 г борнеола и 14.0 г изоборнеола поместили в сосуд объемом 5 л и выдерживали при 503 K до достижения равновесия. Рассчитать мольные доли и массы борнеола и изоборнеола в равновесной смеси.
  23. Равновесие в реакции
  24. 2NOCl(г) = 2NO(г) + Cl 2 (г)

    устанавливается при 227 o C и общем давлении 1.0 бар, когда парциальное давление NOCl равно 0.64 бар (изначально присутствовал только NOCl). Рассчитать r G o для реакции. При каком общем давлении парциальное давление Cl 2 будет равно 0.10 бар?

  25. Рассчитать общее давление, которое необходимо приложить к смеси 3 частей H 2 и 1 части N 2 , чтобы получить равновесную смесь, содержащую 10% NH 3 по объему при 400 o C. Константа равновесия для реакции
  26. N 2 (г) + 3H 2 (г) = 2NH 3 (г)

    при 400 o C равна K = 1.60 10 –4 .

  27. При 250 o C и общем давлении 1 атм PCl 5 диссоциирован на 80% по реакции
  28. PCl 5 (г) = PCl 3 (г) + Cl 2 (г).

    Чему будет равна степень диссоциации PCl 5 , если в систему добавить N 2 , чтобы парциальное давление азота было равно 0.9 атм? Общее давление поддерживается равным 1 атм.

  29. При 2000 o C для реакции
  30. N 2 (г) + O 2 (г) = 2NO(г)

    K p = 2.5 10 –3 . В равновесной смеси N 2 , O 2 , NO и инертного газа при общем давлении 1 бар содержится 80% (по объему) N 2 и 16% O 2 . Сколько процентов по объему составляет NO? Чему равно парциальное давление инертного газа?

  31. Рассчитать стандартную энтальпию реакции, для которой константа равновесия
    а) увеличивается в 2 раза, б) уменьшается в 2 раза при изменении температуры от 298 К до 308 К.
  32. Зависимость константы равновесия реакции 2C 3 H 6 (г) = C 2 H 4 (г) + C 4 H 8 (г) от температуры между 300 К и 600 К описывается уравнением

ln K = –1.04 –1088 /T +1.51 10 5 /T 2 .

 


Читайте:



Вектор. Координаты вектора. Как найти координаты вектора Как найти координаты вектора онлайн

Вектор. Координаты вектора. Как найти координаты вектора Как найти координаты вектора онлайн

Нахождение координат вектора довольно часто встречаемое условие многих задач в математике. Умение находить координаты вектора поможет вам в других,...

Производная синуса: (sin x)′ Производная функции sinx x равна

Производная синуса: (sin x)′ Производная функции sinx x равна

Представлено доказательство и вывод формулы для производной синуса - sin(x). Примеры вычисления производных от sin 2x, синуса в квадрате и кубе....

Смещение химического равновесия

Смещение химического равновесия

П р и м е р.Вычислите константу химического равновесия для обратимой гомогенной реакции, СО + Н 2 О = СО 2 + Н 2 , исходя из того, что равновесие...

Народы Приамурья. Чжурчжэни. Кто такие чжурчжени

Народы Приамурья. Чжурчжэни. Кто такие чжурчжени

Кто такие чжурчжэни? Чжурчжэни (нюйчжэни, нюйчжи) – народ, известный в Приамурье и сопредельных территориях с XI века. Первоначально так называли...

feed-image RSS