Главная - Физика
Виды картографических проекций и их сущность. Картографическая проекция. Виды искажений в картографических проекциях. Классификация проекций Карта полушарий построена на основе какой проекции

Географическими картами человек пользуется с глубокой древности. Первые попытки изобразить были предприняты еще в Древней Греции такими учеными, как Эратосфен и Гиппарх. Естественно, с тех пор картография как наука далеко продвинулась вперед. Современные карты создаются с помощью съемки со спутников и с использованием компьютерных технологий, что, конечно же, способствует увеличению их точности. И все же, на каждой географической карте присутствуют некоторые искажения относительно натуральных форм, углов или расстояний на земной поверхности. Характер этих искажений, а, следовательно, и точность карты, зависит от видов картографических проекций, использованных при создании конкретной карты.

Понятие картографическая проекция

Разберем подробнее, что такое картографическая проекция и какие их виды применяются в современной картографии.

Картографическая проекция - это изображение на плоскости. Более глубокое с научной точки зрения определение звучит так: картографическая проекция - это способ отображения точек поверхности Земли на некоторой плоскости, при котором между координатами соответствующих точек отображаемой и отображенной поверхностей устанавливается некоторая аналитическая зависимость.

Как строится картографическая проекция?

Построение любых видов картографических проекций происходит в два этапа.

  1. Во-первых, геометрически неправильная поверхность Земли отображается на некоторую математически правильную поверхность, которую называют поверхностью относимости. Для наиболее точного приближения в этом качестве чаще всего используют геоид - геометрическое тело, ограниченное водной поверхностью всех морей и океанов, связанных между собой (уровень моря) и имеющих единую водную массу. В каждой точке поверхности геоида сила тяжести приложена нормально. Однако геоид, как и физическую поверхность планеты, также нельзя выразить единым математическим законом. Поэтому в качестве поверхности относимости вместо геоида принимают эллипсоид вращения, придавая ему максимальное подобие геоиду с помощью степени сжатия и ориентации в теле Земли. Называют это тело земным эллипсоидом или референц-эллипсоидом, причем в разных странах для них принимают различные параметры.
  2. Во-вторых, принятая поверхность относимости (референц-эллипсоид) переносится на плоскость с использованием той или иной аналитической зависимости. В итоге получаем плоскую картографическую проекцию

Искажение проекций

А вы не задумывались, почему на разных картах очертания материков немного различаются? На одних картографических проекциях некоторые части света выглядят больше или меньше относительно каких-либо ориентиров, чем на других. Все дело в искажении, с которым проекции Земли переносятся на плоскую поверхность.

Но почему картографические проекции отображают в искаженном виде? Ответ довольно прост. Сферическую поверхность не представляется возможным развернуть на плоскости, избежав складок или разрывов. Поэтому и изображение с нее нельзя отобразить, избежав искажения.

Методы получения проекций

Изучая картографические проекции, их виды и свойства необходимо упомянуть о методах их построения. Итак, картографические проекции получают, используя два основных метода:

  • геометрический;
  • аналитический.

В основе геометрического метода лежат закономерности линейной перспективы. Наша планета условно принимается сферой некоторого радиуса и проецируется на цилиндрическую или коническую поверхность, которая может либо касаться, либо рассекать ее.

Проекции, полученные подобным способом, называются перспективными. В зависимости от положения точки наблюдения относительно поверхности Земли перспективные проекции разделяют на виды:

  • гномонические или центральные (когда точка зрения совмещена с центром земной сферы);
  • стереографические (в этом случае точка наблюдения расположена на поверхности относимости);
  • ортографическая (когда поверхность наблюдается из любой точки, находящейся вне сферы Земли; проекция строится переносом точек сферы с помощью параллельных линий, перпендикулярных к отображающей поверхности).

Аналитический метод построения картографических проекций базируется на математических выражениях, связывающих точки на сфере относимости и плоскости отображения. Такой метод является более универсальным и гибким, позволяя создавать произвольные проекции по заранее заданному характеру искажения.

Виды картографических проекций в географии

Для создания географических карт используют множество видов проекций Земли. Их классифицируют по различным признакам. В России применяется классификация Каврайского, которая использует четыре критерия, определяющих основные виды картографических проекций. В качестве характерных классифицирующих параметров используют:

  • характер искажения;
  • форму отображения координатных линий нормальной сетки;
  • расположение точки полюса в нормальной координатной системе;
  • способ применения.

Итак, какие существуют виды картографических проекций согласно данной классификации?

Классификация проекций

По характеру искажения

Как упоминалось выше, искажение, в сущности, является неотъемлемым свойством любой проекции Земли. Искажена может быть любая характеристика поверхности: длина, площадь или угол. По типу искажений выделяют:

  • Равноугольные или конформные проекции , в которых азимуты и углы переносятся без искажений. Координатная сетка в конформных проекциях является ортогональной. Карты, полученные таким путем, рекомендуется использовать для определения расстояний в любом направлении.
  • Равновеликие или эквивалентные проекции , где сохраняется масштаб площадей, который принимается равным единице, т. е. площади отображаются без искажения. Такие карты применяют для сравнения площадей.
  • Равнопромежуточные или эквидистантные проекции , при построении которых сохраняется масштаб по одному из основных направлений, который принимается единичным.
  • Произвольные проекции , на которых могут присутствовать все разновидности искажений.

По форме отображения координатных линий нормальной сетки

Такая классификация является максимально наглядной и, следовательно, наиболее легкой для восприятия. Отметим, однако, что данный критерий относится только к проекциям, ориентированным нормально к точке наблюдения. Итак, исходя из данного характерного признака, различают следующие виды картографических проекций:

Круговые , где параллели и меридианы представляют окружностями, а экватор и средний меридиан сетки в виде прямых линий. Подобные проекции применяют для изображения поверхности Земли в целом. Примерами круговых проекций могут служить равноугольная проекция Лагранжа, а также произвольная проекция Гринтена.

Азимутальные . В данном случае параллели представляют в виде концентрических окружностей, а меридианы в виде пучка расходящихся радиально из центра параллелей прямых. Подобная разновидность проекций используется в прямом положении для отображения полюсов Земли с прилегающими территориями, а в поперечном в качестве знакомой каждому с уроков географии карты западного и восточного полушарий.

Цилиндрические , где меридианы и параллели представлены прямыми пересекающимися нормально линиями. С минимальным искажением здесь отображаются территории, прилегающие к экватору или же растянутые вдоль некоторой стандартной широты.

Конические , представляющие собой развертку боковой поверхности конуса, где линии параллелей являются дугами окружностей с центром в вершине конуса, а меридианов - направляющими, расходящимися из вершины конуса. Такие проекции наиболее точно изображают территории, лежащие в средних широтах.

Псевдоконические проекции похожи на конические, только меридианы в данном случае изображаются кривыми линиями, симметричными относительно прямолинейного осевого меридиана сетки.

Псевдоцилиндрические проекции напоминают цилиндрические, только, также, как и в псевдоконических, меридианы изображаются кривыми линиями, симметричными осевому прямолинейному меридиану. Используются для изображения Земли целиком (например, эллиптическая проекция Мольвейде, равновеликая синусоидальная Сансона и т. д.).

Поликонические , где параллели изображаются в виде окружностей, центры которых расположены на среднем меридиане сетки или его продолжении, меридианы в виде кривых, расположенных симметрично прямолинейному

По положению точки полюса в нормальной системе координат

  • Полярные или нормальные - полюс системы координат совпадает с географическим полюсом.
  • Поперечные или трансверсионные - полюс нормальной системы совмещается с экватором.
  • Косые или наклонные - полюс нормальной сетки координат может находиться в любой точке между экватором и географическим полюсом.

По способу применения

По способу использования выделяют следующие виды картографических проекций:

  • Сплошные - проецирование всей территории на плоскость производится по единому закону.
  • Многополосные - картографируемая местность условно разбивается на несколько широтных зон, которые проецируют на плоскость отображения по единому закону, но с изменением параметров для каждой зоны. Примером подобной проекции может служить трапециевидная проекция Мюфлинга, которая применялась в СССР для крупномасштабных карт до 1928 г.
  • Многогранные - территорию условно разбивают на некоторое количество зон по долготе, проецирование на плоскость производится по единому закону, но с разными параметрами для каждой из зон (например, проекция Гаусса-Крюгера).
  • Составные , когда некоторая часть территории отображается на плоскость с использованием одной закономерности, а остальная территория с другой.

Достоинством как многополосных, так и многогранных проекций является высокая точность отображения в пределах каждой зоны. Однако весомым недостатком при этом является невозможность получения сплошного изображения.

Разумеется, каждую картографическую проекцию можно классифицировать с использованием каждого из вышеперечисленных критериев. Так, знаменитая проекция Земли Меркатора является конформной (равноугольной) и поперечной (трансверсионной); проекция Гаусса-Крюгера - конформной поперечной цилиндрической и т. д.

Картографической проекцией называется математически определенный способ отображения поверхности земного эллипсоида на плоскости. Он устанавливает функциональную зависимость между географическими координатами точек поверхности земного эллипсоида и прямоугольными координатами этих точек на плоскости, т.е.

X = ƒ 1 (B , L ) и Y = ƒ 2 (В, L ).

Картографические проекции классифицируются по характеру искажений, по виду вспомогательной поверхности, по виду нормальной сетки (меридианов и параллелей), по ориентировке вспомогательной поверхности относительно полярной оси и др.

По характеру искажений выделяют следующие проекции:

1. равноугольные , которые передают величину углов без искажения и, следовательно, не искажают формы бесконечно малых фигур, а масштаб длин в любой точке остается одинаковым по всем направ­лениям. В таких проекциях эллипсы искажений изображаются окружностями разного радиуса (рис. 2 а ).

2. равновеликие , в которых отсутствуют искажения площадей, т.е. сохраняются соотношения площадей участков на карте и эллипсоиде, однако сильно искажаются формы бесконечно малых фигур и масштабы длин по разным направлениям. Бесконечно малые кружки в разных точках таких проекций изображаются равноплощадными эллипсами, имеющими разную вытянутость (рис. 2 б ).

3. произвольные , в которых имеются в разных соотношениях искажения и углов и площадей. Среди них выделяются равнопромежуточные, в которых масштаб длин по одному из главных направлений (меридианам или параллелям) остается постоянным, т.е. сохраняется длинна одной из осей эллипса (рис. 2 в ).

По виду вспомогательной поверхности для проектирования выделяют следующие проекции:

1. Азимутальные , в которых поверхность земного эллипсоида переносится на касательную или секущую его плоскость.

2. Цилиндрические , в которых вспомогательной поверхностью служит боковая поверхность цилиндра, касательная к эллипсоиду или секущая его.

3. Конические , в которых поверхность эллипсоида переносится на боковую поверхность конуса, касательную к эллипсоиду или секущую его.

По ориентировке вспомогательной поверхности относительно полярной оси проекции подразделяются на:

а) нормальные , в которых ось вспомогательной фигуры совпадает с осью земного эллипсоида; в азимутальных проекциях плоскость перпендикулярна к нормали, совпадающей с полярной осью;

б) поперечные , в которых ось вспомогательной поверхности лежит в плоскости земного экватора; в азимутальных проекциях нормаль вспомогательной плоскости лежит в экваториальной плоскости;

в) косые , в которых ось вспомогательной поверхности фигуры совпадает с нормалью, находящейся между земной осью и плоскостью экватора; в азимутальных проекциях плоскость к этой нормали перпендикулярна.

На рис.3 показаны различные положения плоскости, касательной к поверхности земного эллипсоида.

Классификация проекций по виду нормальной сетки (меридианов и параллелей) является одной из основных. По этому признаку выделяется восемь классов проекций.

а б в

Рис. 3. Виды проекций по ориентировке

вспомогательной поверхности относительно полярной оси.

а -нормальная; б -поперечная; в -косая.

1. Азимутальные. В нормальных азимутальных проекциях меридианы изображаются прямыми, сходящимися в одну точку (полюс) под углами, равными разности их долгот, а параллели - концентрическими окружностями, проведенными с общего центра (полюса). В косых и большинства поперечных азимутальных проекциях меридианы, исключая средний, и параллели представляют кривые линии. Экватор в поперечных проекциях - прямая линия.

2. Конические. В нормальных конических проекциях меридианы изображаются прямыми, сходящимися в одной точке под углами, пропорциональными соответствующим разностям долгот, а параллели - дугами концентрических окружностей с центром в точке схода меридианов. В косых и поперечных - параллели и меридианы, исключая средний, - кривые линии.

3. Цилиндрические. В нормальных цилиндрических проекциях меридианы изображаются равноотстоящими параллельными прямыми, а параллели - перпендикулярными к ним прямыми, в общем случае не равноотстоящими. У косых и поперечных проекциях параллели и меридианы, исключая средний, имеют вид кривых линий.

4. Поликонические. При построении этих проекций сеть меридианов и параллелей переносится на несколько конусов, каждый из которых развертывается в плоскость. Параллели, исключая экватор, изображаются дугами эксцентрических окружностей, центры которых лежат на продолжении среднего меридиана, имеющего вид прямой линии. Остальные меридианы - кривые, симметричные к среднему меридиану.

5. Псевдоазимутальные , параллели которых представляют концентрические окружности, а меридианы - кривые, сходящиеся в точке полюса и симметричные относительно одного или двух прямолинейных меридианов.

6. Псевдоконические , в которых параллели представляют собой дуги концентрических окружностей, а меридианы - кривые линии, симметричные относительно среднего прямолинейного меридиана, который может не изображаться.

7. Псевдоцилиндрические , в которых параллели изображаются параллельными прямыми, а меридианы - кривыми, симметричными относительно среднего прямолинейного меридиана, который может не изображаться.

8. Круговые , меридианы которых, исключая средний, и параллели, исключая экватор, изображаются дугами эксцентрических окружностей. Средний меридиан и экватор - прямые.

    Равноугольная поперечно-цилиндрическая проекция Гаусса – Крюгера. Зоны проекции. Порядок отсчета зон и колонн. Километровая сетка. Определение зоны листа топографической карты по оцифровке километровой сетки

Территория нашей страны имеет очень большие размеры. Это приводит при ее переносе на плоскость к значительным искажениям. По этой причине при построении топографических карт в России на плоскость переносят не всю территорию, а отдельные ее зоны, протяженность которых по долготе составляет 6°. Для переноса зон применяется поперечная цилиндрическая проекция Гаусса – Крюгера (в России используется с 1928 г.). Сущность проекции заключается в том, что вся земная поверхность изображается меридиональными зонами. Такая зона получается в результате деления земного шара меридианами через 6°.

На рис. 2.23 изображен касательный к эллипсоиду цилиндр, ось которого перпендикулярна малой оси эллипсоида.

При построении зоны на отдельный касательный цилиндр эллипсоид и цилиндр имеют общую линию касания, которая проходит по среднему меридиану зоны. При переходе на плоскость он не искажается и сохраняет свою длину. Этот меридиан, проходящий посередине зоны, называется осевым меридианом.

Когда зона спроектирована на поверхность цилиндра, он разрезается по образующим и развертывается в плоскость. При развертывании осевой меридиан изображается без искажения прямой РР′ и его принимают за ось X . Экватор ЕЕ′ также изображается прямой линией, перпендикулярной к осевому меридиану. Он принят за ось Y . Началом координат в каждой зоне служит пересечение осевого меридиана и экватора (рис. 2.24).

В результате, каждая зона представляет собой координатную систему, в которой положение любой точки определяется плоскими прямоугольными координатами X и Y .

Поверхность земного эллипсоида делится на 60 шестиградусных по долготе зон. Счет зон ведется от Гринвичского меридиана. Первая шестиградусная зона будет иметь значение 0°– 6°, вторая зона 6°–12° и т. д.

Принятая в России зона шириной 6° совпадает с колонной листов Государственной карты масштаба 1:1 000 000, но номер зоны не совпадает с номером колонны листов этой карты.

Счет зон ведется от Гринвичского меридиана, а счет колонн от меридиана 180°.

Как мы уже говорили, началом координат каждой зоны является точка пересечения экватора со средним (осевым) меридианом зоны, который изображается в проекции прямой линией и является осью абсцисс. Абсциссы считаются положительными к северу от экватора и отрицательными к югу. Осью ординат является экватор. Ординаты считаются положительными к востоку и отрицательными к западу от осевого меридиана (рис. 2.25).

Так как абсциссы отсчитываются от экватора к полюсам, то для территории России, расположенной в северном полушарии, они будут всегда положительными. Ординаты же в каждой зоне могут быть как положительными, так и отрицательными, в зависимости от того, где находится точка относительно осевого меридиана (на западе или востоке).

Чтобы удобно было делать вычисления, необходимо избавиться от отрицательных значений ординат в пределах каждой зоны. Кроме того, расстояние от осевого меридиана зоны до крайнего меридиана в самом широком месте зоны примерно равно 330 км (рис. 2.25). Чтобы делать расчеты, удобнее брать расстояние, равное круглому числу километров. С этой целью ось X условно отнесли к западу на 500 км. Таким образом, за начало координат в зоне принимают точку с координатами x = 0, y = 500 км. Поэтому ординаты точек, лежащих западнее осевого меридиана зоны, будут иметь значения меньше 500 км, а точек, лежащих восточнее осевого меридиана, – более 500 км.

Так как координаты точек повторяются в каждой из 60 зон, впереди ординаты Y указывают номер зоны.

Для нанесения точек по координатам и определения координат точек на топографических картах имеется прямоугольная сетка. Параллельно осям X и Y проводят линии через 1 или 2 км (взятых в масштабе карты), и поэтому их называют километровыми линиями , а сетку прямоугольных координат – километровой сеткой .

Все картографические проекции классифицируются по ряду признаков, в том числе, по характеру искажений, виду меридианов и параллелей нормальной картографической сетки, положению полюса нормальной системы координат.

1. Классификация картографических проекций

по характеру искажений:

а) равноугольные, или конформные оставляют без искажений углы и форму контуров, но имеют значительные искажения площадей. Элементарная окружность в таких проекциях всегда остается окружностью, но размеры ее сильно меняются. Такие проекции особенно удобны для определения направлений и прокладки маршрутов по заданному азимуту , поэтомy их всегда используют на навигационных картах.,

Эти проекции могут быть описаны уравнениями в характеристиках вида:

m=n=a=b=m

q=90 0 w=0 m=n

Рис. Искажения в равноугольной проекции. Карта мира в проекции Меркатора

б) равновеликие, или эквивалентные - сохраняют площади без искажений, однако на них значительно нарушены углы и формы, что особенно заметно на больших территориях. Например, на карте мира приполярные области выглядят сильно сплющенными. Эти проекции могут быть описаны уравнениями вида Р = 1.

Рис. Искажения в равновеликой проекции. Карта мира в проекции Меркатора

в) равнопромежуточные (эквидистантные).

В этих проекциях линейный масштаб по одному из главных направлений постоянен и обычно равен главному масштабу карты, т. е. имеет место

либо а = 1, либо b = 1;

г) произвольные.

Не сохраняют ни углов, ни площадей.

2. Классификация картографических проекций по способу построения

Вспомогательными поверхностями при переходе от эллипсоида или шара к карте могут быть плоскость, цилиндр, конус, серия конусов и некоторые другие геометрические фигуры.

1) Цилиндрические проекции проектирование шара (эллипсоида) ведется на поверхность касательного или секущего цилиндра, а затем его боковая поверхность разворачивается в плоскость.

В этих проекциях параллели нормальных сеток есть прямые параллельные линии, меридианы - также прямые линии, ортогональные к параллелям. Расстояния между меридианами равны и всегда пропорциональны разности долгот

Рис. Вид картографической сетки цилиндрической проекции

Условные проекции — проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др., полученные путем преобразования одной или нескольких сходных проекций.

Псевдоцилиндрические проекции : параллели изображаются прямыми параллельными линиями, меридианы - кривыми линиями, симметричными относительно среднего прямолинейного меридиана, который всегда ортогонален параллелям (применяют для карт мира и Тихого океана).


Рис. Вид картографической сетки псевдоцилиндрической проекции

Полагаем, что географический полюс совпадает с полюсом нормальной системы координат

а) Нормальная (прямая) цилиндрическая - если ось цилиндра совпадает с осью вращения Земли, а его поверхность касается шара по экватору (или сечет его по па-раллелям). Тогда меридианы нормальной сетки предстают в виде равноотстоящих параллельных прямых, а параллели — в виде пря-мых, перпендикулярных к ним. В таких проекциях меньше всего искажений в тропических и приэкваториальных областях.

б) поперечная цилиндрическая проекция - ось цилиндра расположена в плоскости экватора. Цилиндр касается шара по меридиану, искажения вдоль него отсутствуют, и следовательно, в такой проекции наиболее выгодно изображать территории, вытянутые с севера на юг.

в) косая цилиндрическая - ось вспомогательного цилиндра расположена под углом к плоскости экватора. Она удобна для вытянутых территорий, ориентированных на северо-запад или северо-восток.

2) Конические проекции — поверхность шара (эллипсоида) проектируется на поверхность касательного или секущего конуса, после чего она как бы разрезается по образующей и разворачивается в плоскость.

Различают :

· нормальную (прямую) коническую проекцию, когда ось конуса совпа-дает с осью вращения Земли. Меридианы представляют собой прямые, расходящиеся из точки полюса, а параллели — дуги концентрических окружностей. Воображаемый конус каса-ется земного шара или сечет его в районе средних широт, поэто-му в такой проекции удобнее всего картографировать территории России, Канады, США, вытянутые с запада на восток в средних широтах.

· поперечную коническую — ось конуса нежит в плоскости экватора

· косую коническую — ось конуса на-клонена к плоскости экватора.

Псевдоконические проекции — такие, в которых все параллели изображаются дугами концентрических окружностей (как в нормальных конических), средний меридиан — прямая линия, а остальные меридианы — кривые, причем кривизна их возрастает с удалением от среднего меридиана. Применяются для карт России, Евразии, других материков.

Поликонические проекции — проекции, получаемые в результа-те проектирования шара (эллипсоида) на множество конусов. В нормальных поликонических проекциях параллели представлены дугами эксцентрических окружностей, а меридианы — кривые, симметричные относительно прямого среднего меридиана. Чаще всего эти проекции применяются для карт мира.

3) Азимутальные проекции поверхность земного шара (эллип-соида) переносится на касательную или секущую плоскость. Если плоскость перпендикулярна к оси вращения Земли, то получается нормальная (полярная) азимутальная проекция. В этих проекциях параллели изображаются одноцентровыми окружностями, меридианы - пучком прямых линий с точкой схода, совпадающей с центром параллелей. В этой проекции всегда кар-тографируют полярные области нашей и других планет.

а — нормальная или полярная проекция на плоскость; в — сетка в поперечной (экваториальной) проекции;

г — сетка в косой азимутальной проекции.

Рис. Вид картографической сетки азимутальной проекции

Если плоскость проекции перпендикулярна к плоскости эква-тора, то получается поперечная (экваториальная) азимутальная проекция. Она всегда используется для карт полушарий. А если проектирование выполнено на касательную или секущую вспомогательную плоскость, находящуюся под любым углом к плоскости экватора, то получается косая азимутальная проекция.

Среди азимутальных проекций выделяют несколько их разно-видностей, различающихся по положению точки, из которой ве-дется проектирование шара на плоскость.

Псевдоазимутальные проекции — видоизмененные азимуталь-ные проекции. В полярных псевдоазимутальных проекциях парал-лели представляют собой концентрические окружности, а мери-дианы — кривые линии, симметричные относительно одного или двух прямых меридианов. Поперечные и косые псевдоазимуталь-ные проекции имеют общую овальную форму и обычно применя-ются для карт Атлантического океана или Атлантического океана вместе с Северным Ледовитым.

4) Многогранные проекции проекции, получаемые путем про-ектирования шара (эллипсоида) на поверхность касательного или секущего многогранника. Чаще всего каждая грань представляет собой равнобочную трапецию.

3) Классификация картографических проекций по положению полюса нормальной системы координат

В зависимости от положения полюса нормальной системы Р о , все проекции подразделяются на следующие:

а) прямые или нормальные - полюс нормальной системы Р о совпадает с географическим полюсом (φ о = 90°);

б) поперечные или экваториальные - полюс нормальной системы Р о лежит на поверхности в плоскости экватора (φ о = 0°);

в) косые или горизонтальные - полюс нормальной системы Р о располагается между географическим полюсом и экватором (0° < φ о <90°).

В прямых проекциях основная и нормальная сетки совпадают. В косых и поперечных проекциях такого совпадения нет.

Рис. 7. Положение полюса нормальной системы (Р о) в косой картографической проекции

Карта — плоское, искаженное изображение земной поверхности, на котором искажения подчинены определенному математическому закону.
Положение любой точки на плоскости может быть определено пересечением двух координатных линий, которые однозначно соответствовали бы координатным линиям на Земле (?, ?). Отсюда следует, что для получения плоского изображения земной поверхности нужно сначала нанести на плоскость систему координатных линий, которая соответствовала бы таким же линиям на сфере. Имея нанесенную на плоскость систему меридианов и параллелей, можно теперь нанести на эту сетку любые точки Земли.
Картографическая сетка — условное изображение географической сетки земных меридианов и параллелей на карте в виде прямых или кривых линий.
Картографическая проекция — способ построения картографической сетки на плоскости и изображение на ней сферической поверхности Земли, подчиненный определенному математическому закону.
Картографические проекции по характеру искажений делятся на:
1. Равноугольные (конформные) = проекции, не искажающие углов. Сохраняется подобие фигур. Масштаб изменяется с изменением? и?. Отношение площадей не сохраняется (о. Гренландия? Африке, SАфр. ? 13,8 Sо.Гренландия).
2. Равновеликие (эквивалентные) — проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям в натуре. Равенства углов и подобия фигур не сохраняются. Масштаб длин в каждой точке не сохраняется по разным направлениям.
3. Произвольные — проекции, заданные несколькими условиями, но не обладающие ни свойствами равноугольности, ни свойствами равновеликости. Ортодромическая проекция — дуга большого круга изображается прямой линией.

Картографические проекции по способу построения картографической сетки делятся на:
1. Цилиндрические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность цилиндра, касающегося условного глобуса (или секущего его), с последующей разверткой этого цилиндра на плоскость.
Прямая цилиндрическая проекция — ось цилиндра совпадает с осью Земли;
Поперечная цилиндрическая проекция — ось цилиндра перпендикулярна оси Земли;
Косая цилиндрическая проекция — ось цилиндра расположена к оси Земли под углом отличным от 0° и 90°.
2. Конические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность конуса, касающегося условного глобуса (или секущего его), с последующей разверткой этого конуса на плоскость. В зависимости от положения конуса относительно оси Земли различают:
Прямую коническую проекцию — ось конуса совпадает с осью Земли;
Поперечную коническую проекцию — ось конуса перпендикулярна оси Земли;
Косую коническую проекцию — ось конуса расположена к оси Земли под углом отличным от 0° и 90°.
3. Азимутальные — проекции, в которых меридианы — радиальные прямые, исходящие из одной точки (центральной), под углами равными соответствующим углам в натуре, а параллели?-концентрические окружности, проведенные из точки схождения меридианов (ортографические, внешние, стереографические, центральные, полярные, экваториальные, горизонтные).
Меркаторская проекция
Предложенная Меркатором проекция относится к разряду нормальных цилиндрических равноугольных проекций.
Карты, построенные в этой проекции, называются меркаторскими, а проекция — проекция Меркатора или меркаторская проекция.
В меркаторской проекции все меридианы и параллели прямые и взаимноперпендикулярные линии, а линейная величина каждого градуса широты постепенно увеличивается с возрастанием широты, соответственно растягиванию параллелей, которые все в этой проекции по длине равны экватору.
Проекция Меркатора по характеру искажений относится к классу равноугольных.
Для получения морской навигационной карты в проекции Меркатора условный глобус помещают внутрь касательного цилиндра таким образом, чтобы их оси совпали.
Затем проецируют из центра глобуса меридианы на внутренние стенки цилиндра. При этом все меридианы изобразятся прямыми, параллельными между собой и перпендикулярными экватору линиями. Расстояния между ними равны расстояниям между теми же меридианами по экватору глобуса. Все параллели растянутся до величины экватора. При этом параллели, ближайшие к экватору, растянутся на меньшую величину и по мере удаления от экватора и приближения к полюсу величина их растяжения увеличивается.
Закон растяжения параллелей (рис. 1).

а) б) в)
Рис. 1. Закон растяжения параллелей
R и r – радиус Земли и произвольной параллели (СС?).
? – широта произвольной параллели (СС?).
Из прямоугольного треугольника ОС?К получим:
R = r sec?
Обе части равенства умножим на 2?, получим:
2? R = 2? r sec?
где 2? R – длина экватора;
2? r – длина параллели в широте?.
Следовательно, длина экватора равна длине соответствующей параллели, умноженной на секанс широты этой параллели. Все параллели, удлиняясь до длины экватора, растягиваются пропорционально sec?.
Разрезав цилиндр по одной из образующих, и развернув его на плоскость, получим сетку взаимно перпендикулярных меридианов и параллелей (рис. 1б).
Эта сетка не удовлетворяет требованию равноугольности, т.к. изменились расстояния между меридианами по параллели, ибо каждая параллель растянулась и стала равной длине экватора. В результате фигуры с поверхности Земли перенесутся на сетку в искаженном виде. Углы в природе не будут соответствовать углам на сетке.
Очевидно, для того, чтобы не было искажений, т.е. чтобы сохранить на карте подобие фигур, а следовательно, и равенство углов, необходимо все меридианы в каждой точке растянуть на столько, на сколько растянулись в данной точке параллели, т.е. пропорционально sec?. При этом эллипс на проекции вытянется в направлении малой полуоси и станет кругом, подобным острову круглой формы на поверхности Земли. Радиус круга станет равным большой полуоси эллипса, т.е. будет в sec? раз больше круга на поверхности Земли (рис. 1в).
Полученная таким образом картографическая сетка и проекция будут полностью удовлетворять требованиям, предъявленным к морским навигационным картам, т.е. проекцией Меркатора.
Поперечная цилиндрическая проекция
Поперечная цилиндрическая проекция применяется для составления морских навигационных карт и карт-сеток на приполюсные районы для?Г > 75?80°N(S).
Как и нормальная цилиндрическая проекция Меркатора, эта проекция является равноугольной (не искажает углы).
При построении и использовании карт в данной проекции применяется система квазигеографических координат («квази» (лат.) – как бы»), которая получается следующим образом (рис. 2):

Рис. 2. Поперечная цилиндрическая проекция
? Северный полюс условно помещается в точку с координатами: ?Г = 0°, ?Г = 180° (р-н Тихого океана), а южный полюс – в точку с координатами: ?Г = 0°, ?Г = 0° (р-н Гвинейского залива).
Полученные точки называются квазиполюсами: PNq – северным, PSq – южным.
? Проведя квазимеридианы и квазипараллели относительно квазиполюсов, получим новую систему координат, повернутую на 90° относительно географической.
Координатными осями этой системы будут:
1. начальный квазимеридиан – большой круг, проходящий через северный географический полюс (PN) и квазиполюсы (PNq и PSq), он совпадает с географическим (?Г = 0° и?Г = 180°) Гринвичским (начальным) меридианом;
2. квазиэкватор – большой круг, проходящий через географический полюс (PN) и точки на экваторе с долготами: ?Г = 90°Е (р-н Индийского океана) и?Г = 90°W (р-н Галапагоских островов).
Координатными линиями этой системы являются:
3. квазимеридианы – большие круги, проходящие через квазиполюсы;
4. квазипараллели – малые круги, плоскости которых параллельны плоскости квазиэкватора.
Положение любой точки на поверхности Земли на картах в поперечной цилиндрической проекции определяется квазиширотой (?q) и квазидолготой (?q).
? Квазиширота (?q) — угол при центре Земли (шара) между плоскостью квазиэкватора и радиусом, проведенным в данную точку земной поверхности. Квазиширота определяет положение квазипараллелей; отсчитывается от квазиэкватора к квазиполюсам: к PNq — + ?q и к PSq — –?q от 0° до 90°.
? Квазидолгота (?q) — двугранный угол при квазиполюсе между плоскостями начального квазимеридиана и квазимеридиана данной точки. Квазидолгота определяет положение квазимеридианов; отсчитывается от географического полюса PN по квазиэкватору к востоку (+?q) и к западу (–?q) от 0° до 180°.
Началом отсчета квазигеографических координат является географический северный полюс (т. PN).
Основные уравнения поперечной цилиндрической равноугольной проекции имеют вид:

y = R ?q; m = n = sec ?q
где

– радиус Земли (м);
m и n – частные масштабы по квазимеридиану и квазипараллели.

где а = 3437,74?.
Для эллипсоида Красовского: а = 6378245 м.
Переход от географических координат к квазикоординатам выполняется по формулам:
sin ?q = ?cos ? cos ?; tg ?q = ctg ? sin ?
sin ? = ?cos ?q cos ?q; tg ? = ?ctg ?q sin ?q
Прямой линией на такой карте изображается квазилоксодромия, пересекающая квазимеридианы под одним и тем же квазикурсом Кq (рис. 3).

Рис. 3. Квазилоксодромия
Локсодромия, вследствие кривизны географических меридианов, сходящихся на полюсе, будет изображаться кривой линией, обращенной выпуклостью к экватору.
Ортодромия же представит собой кривую малой кривизны, обращенную выпуклостью в сторону ближайшего квазиполюса.
Таким образом, при построении квазигеографической сетки карты используются формулы, аналогичные формулам для нормальной проекции Меркатора с заменой в них географических координат квазигеографическими.
Главный масштаб карт и карт-сеток относят к квазиэкватору.
Географические меридианы изображаются кривыми, близкими к прямым линиям.
Географические параллели изображаются кривыми линиями, близкими к окружностям.
Квазикурс (Кq) – угол между квазисеверной частью квазимеридиана и направлением носовой части продольной оси судна (отсчитывается по часовой стрелке от 0° до 360°).
Для перехода от географических направлений к направлениям в квазигеографической системе координат используется угол перехода Q – угол между географическим меридианом и квазимеридианом, значение которого можно получить из треугольника АPNPNq (рис. 2).

Кq = ИК? Q
В широтах >80°, когда соs ?q ? 1, получим:
sin Q = sin ?
т.е. в высоких широтах угол перехода практически равен долготе точки.
Прокладка курса на такой карте относительно географических или квазигеографических меридианов осуществляется по формуле:
ИК = Кq + ?; Кq = ИК? ?
Для прокладки расстояний необходимо пользоваться специальными вертикальными шкалами с линейным масштабом в морских милях, находящимися за боковыми рамками карт.
Для приполюсных районов Северного Ледовитого океана (СЛО) издаются карты М 1:500.000, на которых красным цветом нанесены квазипараллели, а черным цветом – географические меридианы и параллели с двойной оцифровкой красным и зеленым цветом. Это позволяет использовать карту-сетку в двух районах, симметричных относительно географических меридианов 0°…..180° и 90°Е…..90°W.
По аналогии с нормальной проекцией Меркатора на картах и картах-сетках в поперечной проекции Меркатора прямой линией изображается квазилоксодромия – кривая на поверхности Земли, пересекающая квазимеридианы под постоянным углом Кq (при?q ? 15° ее можно принимать за кратчайшую линию).
Уравнение квазилоксодромии:
?q2 ? ?q1 = tg Кq (Dq2 ? Dq1)
где?q2 ? ?q1 – разность квазидолгот точек;
Dq2 ? Dq1 – разность квазимеридиональных частей (табл. 26 «МТ-75» или табл. 2.28а «МТ-2000»).
Если известен главный масштаб карты или карты-сетки
МГ = 1: CГ
по квазиэкватору, то частный масштаб
МТ = 1: CТ
в точке с квазиширотой?q вычисляется по формуле:
МТ = МГ sec ?qТ
или
CТ = CГ cos ?qТ
(масштаб карт увеличивается по мере удаления от квазиэкватора).
Перспективные картографические проекции
Перспективные проекции применяются для составления некоторых справочных и вспомогательных карт (обзорные карты обширных районов, ортодромические карты, ледовые карты и пр.).
Эти проекции представляют собой частный случай азимутальных проекций.
(Азимутальные проекции – проекции, в которых меридианами являются радиальные прямые, исходящие из одной точки (центральной точки) под углами, равными соответствующим углам в натуре, а параллели – концентрические окружности, проведенные из точки схождения меридианов).

Рис. 4. Перспективные проекции
В перспективных проекциях (рис. 4) поверхность Земли (сферы) переносится на картинную плоскость методом проецирования с помощью пучка прямых, исходящих из одной точки – точки зрения (ТЗ).
Картинная плоскость может отстоять от поверхности сферы на некотором расстоянии (КП1), касаться сферы (КП2), или пересекать ее.
Точка зрения (т. О) лежит в одной из точек на перпендикуляре к картинной плоскости, проходящем через центр сферы.
Точку пересечения картинной плоскости с перпендикуляром называют центральной точкой карты (ЦТ).
В зависимости от положения точки зрения (ТЗ) одна и та же точка (т. К0) будет отстоять на различных расстояниях? от ЦТ карты, что и будет определять характер искажений, присущих данной проекции.
Наиболее распространенными перспективными проекциями являются – гномоническая (центральная) и стереографическая.
В гномонической проекции точка зрения (ТЗ) совпадает с центром сферы (ТЗ — в т. О1).
Сетка меридианов и параллелей карты строится по формулам, связывающим прямоугольные координаты точек с их географическими координатами.
В зависимости от положения центральной точки (ЦТ) карты, гномоническая проекция может быть (рис. 5):
a. нормальной (полярной) – если центральная точка (ЦТ) совмещена с географическими полюсом (рис. 5а);
b. экваториальной (поперечной) – если центральная точка (ЦТ) расположена на экваторе (рис. 5б);
c. косой – если центральная точка (ЦТ) расположена в некоторой промежуточной широте (рис. 5в).

а) б) в)
Рис. 5. Гномонические проекции
Общие свойства карт в гномонической проекции:
1) большие искажения как формы, так и размеров фигур, возрастающие по мере удаления от центральной точки (ЦТ) карты, поэтому измерение расстояний и углов на такой карте затруднено.
Измеряемые по карте углы и расстояния, называемые гномоническими, могут довольно значительно отличаться от истинных значений, вследствие чего для точных измерений карты в данной проекции не применяются;
2) отрезки дуги большого круга (ортодромии) изображаются прямыми линиями, что позволяет использовать гномоническую проекцию при построении ортодромических карт.
Карты в гномонической проекции строятся, как правило, в мелких масштабах для участков поверхности Земли меньше полушария, а сжатие Земли не учитывается.
В стереографической проекции картинная плоскость касается поверхности сферы, а точка зрения (ТЗ) расположена в т. О2 (рис. 4), являющейся антиподом точки касания. Эта проекция равноугольная, однако, для решения навигационных задач она неудобна, так как основные линии – локсодромия и ортодромия – изображаются в этой проекции сложными кривыми.
Стереографическая проекция является одной из основных для построения справочных и обзорных карт обширных территорий.
Равноугольная картографическая проекция Гаусса
Равноугольная проекция Гаусса применяется для составления топографических и речных карт, а также и планшетов.
Основной картографической сеткой этой проекции является сетка прямоугольных координат.
В прямоугольной системе координат проекции Гаусса вся поверхность земного эллипсоида разбита на 60 6-ти градусных зон, ограниченных меридианами, каждая из которых имеет свое начало координат – точку пересечения осевого меридиана зоны с экватором.

Рис. 6. Равноугольная проекция Гаусса
Счет зон введется от Гринвичского меридиана к Е от № 1 до № 60. Любую заданную точку в пределах зоны (т. А – рис. 6) получают в пересечении 2-х координатных линий:
1. дуги эллипса nAn?, параллельной осевому меридиану зоны и
2. кратчайшей линии АА?, проведенной из данной точки А перпендикулярно осевому меридиану.
За начало координат в каждой зоне принимается точка пересечения осевого меридиана с экватором.
Удаление точки А? (основание перпендикуляра) от экватора определяется абсциссой Х, а удаление малого круга nn? от осевого меридиана – ординатой У.
Абсциссы Х во всех зонах отсчитываются в обе стороны от экватора («+» — к N).
Ординате У приписывается знак «плюс» (+), когда заданная точка удалена к Е (востоку) от осевого меридиана зоны, и знак «минус» (–), когда заданная точка удалена от осевого меридиана к W (западу).
Для определения отечественного номера зоны, в которой расположена заданная точка с долготой?, применяют формулу:
n = (? + 3°)/6
(ближайшее целое число от 1 до 60).
Деление долготы? производится до ближайшего целого числа (для? = 55°Е? n = 10).
Для вычисления долготы L0 осевого меридиана зоны применяют формулу:
L0 = 6 n ? 3°
(для n = 10 ? L0 = 57°Е).
N – международная нумерация зон (от меридиана 180° к востоку).
Для?E: N = n + 30 и n = N – 30 (для восточного полушария).
Для?W: N = n – 30 и n = N + 30 (для западного полушария).
В табл. 2.31а «МТ-2000» указаны значения отечественных (n) и международных (N) номеров долготных зон, их границы и долгота (?0) осевого меридиана? см. табл. 10.1.
Прямоугольная система координат применяется при производстве топографических работ, составлении топографических карт, расчете направлений и расстояний между точками при малых расстояниях.
Граничными линиями карты в проекции Гаусса служат меридианы и параллели.
Положение заданной точки на карте определяют указанием плоских прямоугольных координат Х и У.
Этим координатам соответствуют километровые линии:
Х = const – параллельна экватору, и
У = const – параллельная осевому меридиану зоны.
Плоские координаты Х и У являются функциями географических координат точки и в общем виде могут быть представлены выражениями:
X = f1 (?,l); Y = f2 (?,l)
где l – разность долгот заданной точки и осевого меридиана, т.е.
l = ? ? L0
Вид функций f1 и f2 выводится так, чтобы обеспечивалось свойство равноугольности проекции при постоянном масштабе вдоль осевого меридиана зоны.
Километровые линии – линии одинаковых значений абсцисс X = const или ординат Y = const, выраженные целым числом км.
Километровые линии (X = const и У = const) ? два семейства взаимно перпендикулярных прямых и оцифровываются соответствующими значениями координат в км. На картах в проекции Меркатора линии X изображаются кривыми, обращенными выпуклостью к полюсу, а линии Y – кривыми, выпуклостью к осевому меридиану и расходящимся по мере удаления от экватора.
Для исключения отрицательных значений ординат оцифровка осевого меридиана увеличена на 500 км.
(При Х = 6656 и У = 23612 ? заданная точка удалена от экватора по осевому меридиану на 6656 км, находится в 23-й зоне и имеет условную ординату 612, а фактически? 112 км к Е).
Прямоугольные координаты Х и У выражают обычно в метрах.
Рамки карт в проекции Гаусса разбиты на минуты по широте и долготе. Значения широт и долгот параллелей и меридианов, ограничивающих карту, надписываются в углах рамки.
Меридианы и параллели на карту не наносятся. При необходимости их можно провести через соответствующие деления минут широты и долготы на рамках карты.
Угол между километровой линией У = const и истинным меридианом называется сближением или схождением меридианов. Этот угол (?) отсчитывается от северной части истинного меридиана по часовой стрелке до северной части километровой линии У = const
Схождению меридианов приписывают знак «плюс» (+), если заданная точка расположена к Е (востоку) от осевого меридиана, и знак «минус» (–), если она расположена к W (западу) от осевого меридиана зоны.
При известных координатах? и? заданной точки угол? вычисляется по формуле:
? = (? ? L0) sin ?
где L0 – долгота осевого меридиана зоны.

Ввиду ограниченной ширины зоны кратчайшие линии на картах в проекции Гаусса, изображаются практически прямыми линиями, а масштаб по всей карте постоянен.
Эти свойства, а также наличие сетки прямоугольных координат являются главными причинами широкого применения данной проекции при всех топографических, геодезических и гидрографических работах.
Для решения задач, связанных с использованием как географических, так и прямоугольных координат точек, а также с прокладкой отрезков локсодромий, применяются карты, составленные в нормальной проекции Меркатора с дополнительно нанесенной сеткой прямоугольных координат Гаусса. Основные свойства таких карт полностью соответствуют таковым для нормальной проекции Меркатора.

Мировые и экранные координаты

Проекции

При использовании любых графических устройств обычно используют проекции. Проекция задает способ отображения объектов на графическом устройстве. Мы будем рассматривать только проекции на плоскость.

Проецирование - отображение точек, заданных в системе координат с размерностью N, в точки в системе меньшей размерности.

Проекторы (проецирующие лучи) - отрезки прямых, идущие из центра проекции через каждую точку объекта до пересечения с плоскостью проекции (картинной плоскостью).

При отображении пространственных объектов на экране или на листе бумаги с помощью принтера необходимо знать координаты объектов. Мы рассмотрим две системы координат. Первая - мировые координаты, которые описывают истинное положение объектов в пространстве с заданной точностью. Вторая - система координат устройства отображения, в котором осуществляется вывод изображения объектов в заданной проекции. Назовем систему координат графического устройства экранными координатами (хотя это устройство и не обязательно должно быть подобно монитору компьютера).

Пусть мировые координаты будут трехмерными прямоугольными координатами. Где должен размещаться центр координат, и какими будут единицы измерения вдоль каждой оси, для нас сейчас не очень важно. Важно то, что для отображения мы будем знать любые числовые значения координат отображаемых объектов.

Для получения изображения в определенной проекции необходимо вычислить координаты проекции. Для синтеза изображения на плоскости экрана или бумаге используем двумерную систему координат. Основная задача - задать преобразования координат из мировых в экранные.

Изображение объектов на плоскости (экране дисплея) связано с геометрической операцией проектированием. В компьютерной графике используется несколько видов проектирования, но основных - два вида: параллельное и центральное.

Проектирующий пучок лучей направляется через объект на картинную плоскость, на которую в дальнейшем находят координаты пересечения лучей (или прямых) с этой плоскостью.

Рис. 2.14. Основные типы проекций

При центральном проектировании все прямые исходят из одной точки.

При параллельном - считается, что центр лучей (прямых) бесконечно удален, а прямые параллельны.

Каждый из этих основных классов разбивается еще на несколько подклассов в зависимости от взаимного расположения картинной плоскости и координатных осей.


Одноточечная проекция

Рис. 2.15. Классификация плоских проекций



У параллельных проекций центр проекции расположен в бесконечности от плоскости проекции:

  • ортографические (ортогональные),
  • аксонометрические (прямоугольные аксонометрические) - проекторы перпендикулярны к плоскости проекции, расположенной под углом к главной оси,
  • косоугольные (косоугольные аксонометрические) - плоскость проекции перпендикулярна к главной оси, проекторы расположены под углом к плоскости проекции.

У центральных проекций центр проекции находится на конечном расстоянии от плоскости проекции. Имеют место так называемые перспективные искажения.

Ортогональные проекции (основные виды)


Рис. 2.16. Ортогональные проекции

  1. Вид спереди, главный вид, фронтальная проекция, (на заднюю грань V),
  2. Вид сверху, план, горизонтальная проекция, (на нижнюю грань H),
  3. Вид слева, профильная проекция, (на правую грань W),
  4. Вид справа (на левую грань),
  5. Вид снизу (на верхнюю грань),
  6. Вид сзади (на переднюю грань).

Матрица ортогональной проекции на плоскость YZ вдоль оси Х имеет вид:

Если же плоскость параллельна, то эту матрицу надо умножить на матрицу сдвига, тогда:

где р - сдвиг по оси Х;

Для плоскости ZX вдоль оси Y

где q - сдвиг по оси Y;

Для плоскости XY вдоль оси Z:

где R - сдвиг по оси Z.

При аксонометрической проекции проектирующие прямые перпендикулярны плоскости картинки.

Изометрия - все три угла между нормалью картинки и координатными осями равны.

Диметрия - два угла между нормалью картинки и координатными осями равны.

Триметрия - нормальный вектор плоскости картинки образует с координатными осями различные углы.

Каждый из трех видов этих проекций получается комбинацией поворотов, за которой следует параллельное проектирование.


При повороте на угол β относительно оси У (ординат), на угол α вокруг оси Х (абсцисс) и последующем проектировании оси Z (аппликат) возникает матрица

Изометрическая проекция

Рис. 2.17. Изометрические проекции

Диметрическая проекция

Рис. 2.18. Диметрические проекции

Косоугольные проекции

Классический пример параллельной косоугольной проекции - кабинетная проекция (рис. 2. 26). Эта проекция часто используется в математической литературе для черчения объемных форм. Ось у изображается наклоненной под углом 45 градусов. Вдоль оси у масштаб 0. 5, вдоль других осей - масштаб 1. Запишем формулы вычисления координат плоскости проецирования

Здесь, как и раньше, ось Υ пр направлена вниз.

Для косоугольных параллельных проекций лучи проецирования не перпендикулярны плоскости проецирования.

Рис. 2.19. Косоугольные проекции

Теперь относительно центральной проекции. Поскольку для нее лучи проецирования не параллельны, то будем считать нормальной такую центральную проекцию, главная ось которой перпендикулярна плоскости проецирования. Для центральной косоугольной проекции главная ось не перпендикулярна плоскости проецирования.

Рассмотрим пример центральной косоугольной проекции, которая показывает параллельными линиями все вертикальные линии изображаемых объектов. Расположим плоскость проецирования вертикально, ракурс показа зададим углами а, β и положением точки схода (рис. 2. 21).

Рис.2.20. Кабинетная проекция

Рис. 2.21. Вертикальная центральная косоугольная проекция: а – расположение плоскости проецирования, б – вид с левого торца плокости проецирования

Будем считать, что ось Ζ видовых координат располагается перпендикулярно плоскости проецирования. Центр видовых координат - в точке (хс , ус, zc). Запишем соответствующее видовое преобразование:

Как и для нормальной центральной проекции, точка схода лучей проецирования располагается на оси Ζ на расстоянии Ζ k от центра видовых координат. Необходимо учесть наклон главной оси косоугольной проекции. Для этого достаточно отнять от Υ пр длину отрезка 0-0" (рис. 2.21). Эта длина равняется (Ζ k - Ζ пл ) ctgβ. Теперь запишем результат - формулы вычисления координат косоугольной вертикальной проекции

где Пх и Пу - это функции проецирования для нормальной проекции.

Следует отметить, что для такой проекции нельзя сделать вид сверху (β = 0), поскольку здесь сtgP = ∞.

Свойство рассмотренной вертикальной косоугольной проекции, заключающееся в сохранении параллельности вертикальных линий, иногда полезно, например, при изображении домов в архитектурных компьютерных системах. Сравните рис. 2. 22 (верх) и рис. 2.22 (низ). На нижнем рисунке вертикали изображаются вертикалями - дома не "разваливаются".

Рис. 2.21. Сравнение проекций

Кабинетная проекция (аксонометрическая косоугольная фронтальная диметрическая проекция)

Рис. 2.23.Кабинетная проекция

Свободная проекция (аксонометрическая косоугольная горизонтальная изометрическая проекция)

Рис. 2.24.Свободная проекция

Центральная проекция

Центральные проекции параллельных прямых, не параллельных плоскости проекции, сходятся в точкесхода .

В зависимости от числа координатных осей, которые пересекает плоскость проекции, различаются одно, двух и трехточечные центральные проекции.

Рис. 2.25. Центральная проекция

Рассмотрим пример перспективной (центрально) проекции для вертикального расположения камеры, когда α = β = 0. Такую проекцию можно себе представить как изображение на стекле, через которое смотрит наблюдатель, расположенный сверху в точке (х, у, z ) = (0, 0, z k). Здесь плоскость проецирования параллельна плоскости (х 0 у), как показано на рис. 2. 26.

Для произвольной точки пространства (Р), исходя из подобия треугольников, запишем такие пропорции:

X пр /(z k – z пл) = x/(z k – z)

Y пр /(z k – z пл) = y/(z k – z)

Найдем координаты проекции, учитывая также координату Ζпр:

Запишем такие преобразования координат в функциональном виде

где Π - функция перспективного преобразования координат.

Рис. 2.26.Перпективная проекция

В матричной форме преобразования координат можно записать так:

Обратите внимание на то, что здесь коэффициенты матрицы зависят от координаты z (в знаменателе дроби). Это означает, что преобразование координат - нелинейное (а точнее, дробно-линейное), оно относится к классу проективных преобразований.

Мы получили формулы вычисления координат проекции для случая, когда точка схода лучей находится на оси z . Теперь рассмотрим общий случай. Введем видовую систему координат {X, Υ, Ζ), произвольно расположенную в трехмерном пространстве (х, у, z ). Пусть точка схода находится на оси Ζ видовой системы координат, а направление обзора - вдоль оси Ζ противоположно ее направлению. Будем считать, что преобразование в видовые координаты описывается трехмерным аффинным преобразованием

После вычисления координат (X, Y, Z) можно вычислить координаты в плоскости проецирования в соответствии с формулами, уже рассмотренными нами ранее. Поскольку точка схода находится на оси Ζ видовых координат, то

Последовательность преобразования координат можно описать так:

Такое преобразование координат позволяет моделировать расположения камеры в любой точке пространства и отображать в центре плоскости проецирования любые объекты обзора.


Рис. 2.27. Центральная проекция точки P 0 в плоскость Z = d

Глава 3. Растровая графика. Базовые растровые алгоритмы

 


Читайте:



Древние пирамиды на Луне, постройки аннунаков Сооружения на луне

Древние пирамиды на Луне, постройки аннунаков Сооружения на луне

Популярный уфолог Интернета, позиционирующий себя на видеохостинге YouTube под ником Streetcap1, которого в конце прошлого года российские...

Виды и размер стипендий студентам в россии

Виды и размер стипендий студентам в россии

Н.Б. Озерова, лауреат премии Президента России и Правительства России в области образования, почетный работник высшего профессионального...

Все о водороде и водородной воде

Все о водороде и водородной воде

Поговорим о химическом элементе, который лежит в основе всего нас окружающего. В таблице Менделеева водород (H) находится под атомным числом 1 и...

Творчество военных лет Твардовского А

Творчество военных лет Твардовского А

Сочинение В творчестве Твардовского запечатлены основные вехи разви­тия советской страны: коллективизация, Великая Отечествен­ная война,...

feed-image RSS